Identifying haemodynamic determinants of pulse pressure: An integrated numerical and physiological approach

Samuel Vennin1,2, Ye Li1, Marie Willemet2, Jordi Alastruey2 and Phil Chowienczyk1

1Department of Clinical Pharmacology, King’s College London British Heart Foundation Centre, St Thomas’ Hospital, London
2Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London

Background

- Hypertension, the single most important cause of morbidity and mortality worldwide, arises mainly as a result of an increase in pulse pressure (PP).
- Haemodynamic basis of this increase in PP is still disputed

Method

- Three-element Windkessel model

\[P(t) = Z_c Q(t) + \frac{1}{C} \int_0^t e^{-\frac{t-t'}{C}} \left(DBP - P_{out} \right) dt + P_{out} \]

- \textit{In silico data}
Focusing on a similar approach to Willemet et al.1, we created a virtual database of patients (n = 3,095) using a validated 1D model of the arterial network, with cardiac and arterial parameters varied within a physiological range.

- \textit{In vivo data}
Tonometric pressures and echo flows were acquired in normotensive healthy volunteers (n=13,10 men, age 49±8 yr, BP 110±16/69±10 mmHg, mean±SD) and in hypertensive subjects (n=156, 83 men, age 46±17 yr, BP 130±23/83±13 mmHg). Healthy volunteers took part in cross-over studies to investigate the changes in pulsatile haemodynamics during administration of drugs with different inotropic and vasopressor/vasodilator properties.

Results: Investigation

- Impact of variations of the model parameters on PP

- Specific influence of Volume at time of PP and Total Compliance on PP

- Sensitivity analysis on the parameters of the model

Results: Validation

Bland-Altman plots comparing the simulated/measured PP with the estimated PP

Implications

- The 3-element Windkessel model estimates accurately PP
- The main contributors to PP are the total arterial compliance (related to PWV) and the stroke volume
- Ventricular dynamics account for a relatively large proportion of the increased PP in hypertension (20.1 mmHg of the 39.0 mmHg difference in PP between upper and lower tertiles of the hypertensive subjects)2
- This approach can provide a haemodynamically orientated stratified approach to hypertension

2Vennin et al. (2017) “Identifying haemodynamic determinants of pulse pressure: an integrated numerical and physiological approach”, Hypertension, 70(6), 1176-1182.