Assessment of Cardiovascular Biomarkers Derived from Peripheral Pulse Waveforms Using Computational Blood Flow Modelling

Sally Epstein

Department of Biomedical Engineering

King’s College London
A thesis submitted for the degree of

Doctor of Philosophy

2016
Acknowledgements

I would like to thank the unwavering support of my supervisors Jordi Alastrauey and Phil Chowienczyk, without them, this thesis would not have been possible. I would like to acknowledge the financial support of the Centre of Excellence in Medical Engineering (funded by the Wellcome Trust and EPSRC) and the National Institute for Health Research (NIHR) Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust in partnership with King’s College London.

Our collaborators were also instrumental in this work and I would personally like to thank Dr Erik Erhardt, Dr Elena Allen and Dr Ries Robinson from Medici Tech Inc. for their assistance in this work.
Publications related to this thesis

Journal articles

Epstein, S., Vergnaud, A.C., Elliott, P., Chowienczyk, P.

Published proceedings and abstracts

Li, Y., Fok, H., Jiang, B., Epstein, S., Alastruey, J. and Chowienczyk, P., 2014. Do backward pressure waves arise
from reflections or from a reservoir?. Artery Research, 8(4), p.127.

Abstract

The aim of this thesis is to investigate the ability of cardiovascular biomarkers calculated from peripheral pulse waveforms to estimate central properties of the cardiovascular system (e.g. aortic stiffness) using nonlinear one-dimensional (1-D) modelling of pulse wave propagation in the arterial network. To test these biomarkers, I have produced novel 1-D models of pulse wave propagation under normal and pathological conditions. In the first part of my thesis, I extended the modelling capabilities of the existing 1-D/0-D code to represent arterial blood flow under diabetes, hypertension, and combined diabetes and hypertension. Cardiac and vascular parameters of the 1-D model were tailored to best match data available in the literature to produce generalised hypertensive, diabetic, and combined diabetic and hypertensive population models. Using these models, I have shown that the pulse waveform at the finger is strongly affected by the aortic flow wave and the muscular artery stiffness and diameter. Furthermore the peak to peak time measured from the pulse waveform at the finger can identify hypertensive from diabetic patients.

In the second part, I developed a new methodology for optimising the number of arterial segments in 1-D modelling required to simulate precisely the blood pressure and flow waveforms at an arbitrary arterial
location. This is achieved by systematically lumping peripheral 1-D model branches into 0-D models that preserve the net resistance and total compliance of the original model. The methodology is important to simplify the computational domain while maintaining the precision of the numerical predictions – an important step to translate 1-D modelling to the clinic.

This thesis provides novel computational tools of blood flow modelling and waveform analysis for the design, development and testing of pulse wave biomarkers. These tools may help bridge the gap between clinical and computational approaches.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The Cardiovascular System</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 The Heart</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Vascular System</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3 The Pulse Wave</td>
<td>7</td>
</tr>
<tr>
<td>1.1.3.1 Photoplethysmography</td>
<td>9</td>
</tr>
<tr>
<td>1.1.3.2 Applanation Tonometry</td>
<td>12</td>
</tr>
<tr>
<td>1.2 Diseases of the Cardiovascular System</td>
<td>13</td>
</tr>
<tr>
<td>1.2.1 Hypertension</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2 Diabetes</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3 Hypertension and Diabetes</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Risk Factors and Risk Markers</td>
<td>18</td>
</tr>
<tr>
<td>1.3.1 Pulse Wave Velocity</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2 Augmentation Index</td>
<td>21</td>
</tr>
</tbody>
</table>
1.3.3 Stiffness Index ... 21
1.4 Numerical Modelling ... 23
 1.4.1 3-D Models ... 23
 1.4.2 1-D Models ... 24
 1.4.3 0-D Models ... 25
1.5 Motivation and Objectives .. 26
1.6 Thesis Outline .. 27

2 Mathematical Formulation .. 28
 2.1 1-D Governing Equations 30
 2.1.1 1-D Model Assumptions 30
 2.1.2 Mass Conservation ... 31
 2.1.3 Momentum Conservation 32
 2.1.4 Pressure-Area Relationship 36
 2.1.4.1 Non-Linear Elastic Tube Law 37
 2.1.4.2 Non-Linear Viscoelastic Tube Law 40
 2.2 Characteristic System .. 40
 2.3 Linearised 1-D Equations 43
 2.4 Lumped Parameter Models 44
 2.4.1 Two-Element Windkessel Model 44
 2.4.2 Three-element Windkessel Model 46
 2.5 1-D/0-D Model of Blood Flow in the Arterial Network 47
 2.5.1 Vessel Junctions .. 48
 2.5.2 Inlet/Outlet Boundary Conditions 50
 2.6 Numerical Solution of the 1-D Equations 51
2.7 Concluding Remarks ... 52

3 A 1-D Model of Systemic Arterial Blood Flow: Validation and Sensitivity Analysis 53

3.1 Baseline 1-D Model of Systemic Arterial Blood Flow 55
 3.1.1 Qualitative Model Validation 61

3.2 Local Sensitivity Analysis ... 68
 3.2.1 Methods .. 69
 3.2.1.1 Changes in Arterial Properties 69
 3.2.1.2 Changes in Peripheral Properties 71
 3.2.1.3 PPG Features .. 72
 3.2.2 Results ... 74
 3.2.3 Discussion .. 81

3.3 Inflow Waveform Variations 83
 3.3.1 Aortic Flow Features 85
 3.3.2 Aortic Pressure Features 86
 3.3.3 Results .. 86
 3.3.4 Discussion .. 88

3.4 Concluding Remarks .. 95
 3.4.1 Clinical Perspective ... 99

4 Classifying Hypertensive Vs Diabetic Subjects: a Virtual Population Study 101

4.1 Methodology .. 105
 4.1.1 Response Surface Methodology (RSM) 106
 4.1.2 Random Forest Classification 110
4.1.3 Search Strategy ... 111
4.2 Results ... 113
 4.2.1 Factorial Design and RSM Analysis 113
 4.2.2 Fictive Population Simulations – Global Haemodynamic Biomarkers ... 113
 4.2.3 Fictive Population Simulations – PPG Biomarkers 117
4.3 Discussion and Concluding Remarks 121

5 Reducing the Number of Parameters in 1-D Arterial Blood Flow Modelling ... 125
 5.1 Methods ... 130
 5.1.1 55-artery model 130
 5.1.2 67-artery model 131
 5.1.3 Reducing the number of arterial segments 132
 5.1.3.1 Reducing a 1-D model terminal branch into an equivalent 0-D model 133
 5.1.3.2 Reducing a 1-D model single bifurcation into an equivalent 0-D model 141
 5.1.4 Error metrics .. 141
 5.2 Results ... 142
 5.2.1 Normotensive 55-artery model 143
 5.2.2 Hypertensive 55-artery model 144
 5.2.3 Normotensive 67-artery model 147
 5.3 Discussion .. 149
 5.3.1 Optimising arterial network topology 150
5.3.2 Effect of wave reflections on aortic pressure and flow waveforms 152
5.3.3 Effect of wave reflections on digital pressure and flow waveforms 154
5.3.4 Perspective 155
5.3.5 Concluding remarks 156

6 Conclusions and Future Work 157

6.1 Summary of the Thesis Achievements 157

6.1.1 The digital PPG wave is strongly affected by the aortic flow wave and the muscular-artery stiffness and diameter 158

6.1.2 The DVP peak-to-peak time can classify hypertensive vs diabetic subjects: a virtual population study 161

6.1.3 A new method for optimising the number of input parameters in 1-D modelling: Less is more for patient-specific simulations 163

6.2 Directions for Future Research 165

References 170
List of Figures

1.1 Structure of the human heart. The arrows indicate the path followed by the blood flow (Image from [Wikimedia Commons, 2015]). 3

1.2 Flow waveform measured at the aortic root. 4

1.3 Relative cross-sectional area of different vessels (top); total area of vascular beds (middle); peak velocity of blood flow in vessels (bottom). (Taken from [Carter, 2015]) 6

1.4 Cross section of a typical artery (left) and vein (right) [Shier et al., 2003]. 7

1.5 Windkessel phenomena, where the compliant vessel volume acts as a buffer for the pulsatile blood flow from the heart, similar to a traditional fire engine hose. Taken from Westerhof et al. [2009]. 8

1.6 Normalised average of 116 subjects PPG waveform from the digital waveform. Subjects younger than 30 years (N=27), between 30 and 39 years (24), between 40 and 49 years (32), and 50 years of age or older (33). Adapted from Allen & Murray [2003] 11
1.7 Applanation of artery where \(P_e \) = external pressure, \(P_i \) = internal pressure, \(P_t \) = transmural pressure, \(r \) = radius of curvature, \(T \) = wall tension and \(\mu \) = wall thickness. Taken from Miyashita [2012].

1.8 Normal (left) and hypertensive (right) pressure waveforms. Arrow 1 indicates the increase in mean pressure from the increased resistance in the small arteries. Arrow 2 indicates the increase in the systolic incident wave caused by reduced aortic compliance. Arrow 3 shows the augmentation of pressure from the arrival of an earlier reflected waveform. Taken from Levick [2003].

1.9 Pathophysiology of diabetes mellitus with time [Diabetes Advocates, 2015].

1.10 Typical synthesised aortic waveforms from diabetics (right) and in age and sex matched normotensive patients (left). Taken from Wilkinson et al. [2000].

1.11 Pulse wave velocity determination for the carotid to femoral site by the foot-to-foot method. Where \(dL \) = distance travelled by waveform, and \(dt \) = time difference between the foot of the two waveforms.

1.12 Calculation of augmentation index (ratio of peak height above the shoulder of the wave to the pulse pressure) in three types of aortic pressure waveforms generally seen in young (left), older (centre), and old adults (right). They are described as types A, B and C waveforms, respectively. Adapted from Rourke & Pauca [2004].
1.13 Measured DVP waveform with annotated time delay (PPT) between diastolic and systolic peaks. Stiffness Index (SI) calculated as: \(\text{SI} = \frac{h}{\text{PPT}} \), where \(h \) is the height of the patient. Reproduced from Millasseau et al. [2006].

2.1 Layout of a simple compliant tube with cross-sectional area \(A \), flow velocity \(U \), vessel length \(l \), and vessel wall thickness \(h \). General orientation (left) and 1-D model orientation (right). Adapted from Alastruey [2006].

2.2 Relationship between vessel wall dimensions and stresses. The dimensions include inner radius \(R_i \), external radius \(R_e \), and wall thickness \(h \). The stresses include circumferential stress \(T_{\theta} \), longitudinal stress \(T_z \), intraluminal pressure \(P_i \), and external pressure \(P_e \).

2.3 The two-element Windkessel model sketched in hydraulic form, with compliance, \(C \), and resistance to blood flow, \(R \).

2.4 Representation of the electric circuit analogous to the three-element RCR Windkessel model.

2.5 Layout of an arterial bifurcation.

2.6 Layout of the Riemann problem at the inlet boundary to calculate the upwinded states. \((A_L, U_L)\) represents the current variables in the dummy left hand region. \((A_R, U_R)\) represents the initial state in the vessel region. \((A_L^u, U_L^u)\) and \((A_R^u, U_R^u)\) are the Riemann upwind variables. \(W_f \) and \(W_b \) are the forward and backward characteristic variables given by Eq. (2.46).
3.1 Schematic representation of the arterial tree. a) Main systemic arterial tree based on Reymond et al. [2009]. b) Detailed cerebral arterial tree also taken from Reymond et al. [2009]. c) Detail of the hand vasculature taken from Epstein et al. [2015].

3.2 (first four rows) Numerical blood pressure (blue), flow (black) and area (red) waveforms in the (A) aortic arch, (B) left common carotid, (C) right radial, (D) left brachial, (E) thoracic aorta, (F) abdominal aorta, (G) right femoral, (H) left external iliac, (I) left digital artery, (J) temporal arteries. The first and last columns show non-dimensionalised in vivo waveforms measured at approximately the same locations as the corresponding numerical waveforms. In vivo waveforms were taken from Reymond et al. Reymond et al. [2009] for the aortic arch (flow), thoracic aorta, abdominal aorta, femoral (flow) and external iliac arteries; Holdsworth & Norley [1999] for the common carotid artery; Oseli et al. [2003] for the radial artery; Oates [2001] for the brachial artery; Millasseau et al. [2000] for the digital pressure; Mynard & Smolich [2015] for the aortic arch (pressure), the right femoral (pressure), and the right temporal (pressure); and Dawber et al. [1973] for the PPG signal (Class I).

3.3 A typical cross-sectional area waveform at the digital artery and their characteristic parameters. dT= time between systolic and diastolic peaks; CT= crest time; Width= pulse width at half height of the systolic amplitude; PD= peak of diastole; PS= peak of systole. ‘Area’ is the hatched area in green.
3.4 (a) Schematic representation of the 120-artery model modified from Epstein *et al.* [2014]. (b) Pressure waveform at the aortic root. (c) PPG waveform measured at the digital artery under the three different combinations of absorbing and Windkessel outflow boundary conditions described in Table 3.5.

3.5 Pressure waveform at the aortic root under normal conditions (B), with a 200% increase in Windkessel outflow pressure (V1, left), a 120% increase in peripheral resistance (V2, left), a 60% increase in elastic diameter (V3, centre), a 60% increase in muscular diameter (V4, centre), a 200% increase in elastic stiffness (V5, right), or a 200% increase in muscular stiffness (V6, right).

3.6 Change in dT, CT, PS, and PD at the DVP when Windkessel outflow pressure, peripheral resistance (left), elastic and muscular cross-sectional area (centre), and elastic and muscular stiffness (right) are varied from baseline conditions.

3.7 Change in Width and Area at the DVP PPG when Windkessel outflow pressure, peripheral resistance (left), elastic and muscular cross-sectional area (centre), and elastic and muscular stiffness (right) are varied from baseline conditions.

3.8 Flow waveform at the aortic root (top) and cross sectional area waveform at the digital artery (bottom), with change in age (left), period of systole (center) and time of peak systole (right). The central and right waveforms baseline conditions are of medium age.
3.9 A typical pressure (left) and flow waveform (center) at the aortic root, and cross-sectional area waveform at the digital artery (right) and their characteristic parameters. Where PP = pulse pressure amplitude, CQT = crest flow time, PQ = peak flow, dT = time between systolic and diastolic peaks, CT = crest time, Width = pulse width at half height of the systolic amplitude, PD = peak of diastole, and PS = peak of systole. 85

3.10 Plots comparing the crest flow time (CQT) at the aortic root against the time between the arrival of the systolic and diastolic shoulder (dT), crest time (CT), peak of systole (PS), peak of diastole (PD), width at half amplitude (Width), and area under the curve (Area) at the DVP. The age of the plotted inflow is defined as young (red), old (black) and medium (blue). 89

3.11 Plots comparing the peak flow (QP) at the aortic root against the time between the arrival of the systolic and diastolic shoulder (dT), crest time (CT), peak of systole (PS), peak of diastole (PD), width at half amplitude (Width), and area under the curve (Area) at the DVP. The age of the plotted inflow is defined as young (red), old (black) and medium (blue). 90

3.12 Plots comparing the pulse pressure (PP) at the aortic root against the time between the arrival of the systolic and diastolic shoulder (dT), crest time (CT), peak of systole (PS), peak of diastole (PD), width at half amplitude (Width), and area under the curve (Area) at the DVP. The age of the plotted inflow is defined as young (red), old (black) and medium (blue). 91
3.13 Two examples of a PPG waveform (bottom) and their respective inflow waveforms (top). Both waveforms have had an ‘old’ waveform with systolic period varied +25% prescribed to the inlet. The outlier (right) has had its time of peak systole decreased to 80% whereas the normal (left) waveform time of peak systole is at baseline conditions (0%).

4.1 Boxplots of carotid-femoral, carotid-radial, carotid-brachial, and carotid-ankle PWV and systolic, diastolic, and mean pressure of the fictive population at baseline (B), diabetic (D), combined diabetic and hypertensive (DH), and hypertensive (H) conditions. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. A t-test value of less than 0.05, 0.01 and 0.001 are indicated by *, **, and ***, respectively.

4.2 Boxplots of aortic diastolic and systolic diameter of the fictive population at baseline (B), diabetic (D), combined diabetic and hypertensive (DH), and hypertensive (H) conditions. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers. A t-test value of less than 0.05, 0.01 and 0.001 are indicated by *, **, and ***, respectively.
4.3 Boxplots of dT, CT, PS, PD, Width and Area of the PPG signal measured in the fictive population at baseline (B), diabetic (D), combined diabetic and hypertensive (DH), and hypertensive (H) conditions. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. A t-test value of less than 0.05, 0.01 and 0.001 are indicated by *, **, and ***, respectively.

5.1 (c) Schematic representation of the 55-artery 1-D model (black). The circled region shows additional anatomical model of the hand included in the 67-artery model (grey), containing the superficial palmar arch and digital arteries. (a) Flow waveform prescribed at the aortic root as a reflective boundary condition (black), and simulated flow waveform at the digital artery (grey) for the 67-artery model. (b) Simulated pressure waveforms at the aortic root (black) and digital artery (grey) for the 67-artery model. (d) Flow waveform prescribed at the aortic root as a reflective boundary condition (black), and simulated flow waveform at the thoracic aorta (grey) for the 55-artery model. (e) Simulated pressure waveforms for the 55-artery model at the aortic root (black) and thoracic aorta (grey).
5.2 Pressure (P) and flow (Q) waveforms at the aortic root and midpoint
of the digital artery of the 67-artery model (solid grey) and several
reduced models (dashed black), one for each row. The number of
segments and the arterial topology for each reduced model are given
in the first two columns. Average (avg), systolic (sys) and diastolic
(dias) relative errors are indicated in the top right corner of each
plot.

5.3 Pressure (P) and flow (Q) waveforms at the aortic root and mid-
point of the thoracic aorta of the normotensive 55-artery model
(solid grey) and several reduced models (dashed black), one for each
row. The number of segments and the arterial topology for each re-
duced model are given in the first two columns. The aortic-root
pressure waveform calculated by a two-element Windkessel model
of the whole systemic circulation is shown in (f). Average (avg),
systolic (sys) and diastolic (dias) relative errors are indicated in the
top right corner of each plot.
5.4 (left) Reduction of a nonlinear 1-D model single vessel attached to a three-element Windkessel model \((R_1-C-R_2)\) (a) into a single two-element Windkessel model \((R_{\text{new}}-C_{\text{new}})\) (c), via an intermediary stage (b) in which the 1-D vessel is simplified into a two-element Windkessel model \((R_C-C)\). The 1-D vessel is characterised by a length \(l\), a cross-sectional area \(A(x)\), and a pulse wave velocity \(c(x)\). (right) Reduction of a nonlinear 1-D model single bifurcation coupled to three-element Windkessel models \((R_1-C-R_2)\) (d) into a nonlinear 1-D model single vessel coupled to a three-element Windkessel model \((R_{\text{new},1}-C_{\text{new}}-R_{\text{new},2})\) (f). In the intermediary stage (e), the daughter vessels 1 and 2 and their outlet Windkessel model are transformed into two two-element Windkessel models \((C_T-R_T)\).

\[q_{\text{in}}(t): \text{inflow}; \quad q_{\text{out}}(t): \text{outflow}; \quad p_{\text{in}}(t): \text{inflow pressure}; \quad p_{\text{out}}: \text{outflow pressure}. \]

5.5 Evolution of the average (top), systolic (middle) and diastolic (bottom) relative errors in the pressure waveform at the aortic root of the 55-artery model with the number of arterial segments, under normotensive (left) and hypertensive (right) conditions. Vertical dashed lines correspond to the 19-artery model: arterial networks displayed on the left and on the line include a full aorta while those on the right only include portions of it.
5.6 Pressure (P) and flow (Q) waveforms at the aortic root and mid-point of the thoracic aorta of the hypertensive 55-artery model (solid grey) and several reduced models (dashed black), one for each row. The number of segments and the arterial topology for each reduced model are given in the first two columns. The aortic-root pressure waveform calculated by a two-element Windkessel model of the whole systemic circulation is shown in (f). Average (avg), systolic (sys) and diastolic (dias) relative errors are indicated in the top right corner of each plot.

5.7 Evolution of the average (□), systolic (+) and diastolic (●) relative errors in the pressure waveform at the aortic root (a) and digital artery (b) with the number of arterial segments in the 67-artery model. Vertical dashed lines correspond to the 35-artery model: arterial networks displayed on the left and on the line include a full aorta while those on the right only include portions of it.
Chapter 1

Introduction

Diseases of the cardiovascular system are responsible for over four million deaths a year in Europe [Nichols et al., 2013]. Cardiovascular disease (CVD) kills or seriously affects half the population of Britain [Wald & Law, 2003]. Globally, deaths from CVD are projected to reach 23.3 million by 2030 [Mathers & Loncar, 2006]. With the right diagnosis, CVD can be treated or delayed [Wald & Law, 2003].

These figures highlight the importance of developing efficient techniques to accurately diagnose and quantify the severity of diseases of the cardiovascular system. To achieve this objective a sound understanding of the physical origin of cardiovascular signals that can be easily acquired in vivo (ideally using non-invasive techniques) and used to diagnose and treat CVD needs to be accomplished. However, this understanding is hampered by the complex biological interactions of the cardiovascular system in vivo. This research focuses on the study of several indices that can be measured from the shape of pressure and flow pulse waveforms and which may be used to identify and classify CVD status. Numerical modelling
is used to study the interactions of physical characteristics of the cardiovascular system and how they contribute to changes in pulse waveforms at various arterial locations. Several cardiovascular conditions (e.g. hypertension, diabetes) significantly alter parameters found at the digital volume pulse (DVP) measured at the finger. How best to build a one-dimensional (1-D) model of blood flow in the systemic circulation that includes the larger arteries of the hand and represents the effect of these conditions on the DVP is explored within this work.

In this chapter we first provide a brief anatomical and physiological description of the cardiovascular system (Section 1.1) and an overview of diseases of the cardiovascular system relevant to this work (Section 1.2). We then define the difference between risk factors and risk markers, and provide examples of risk markers considered within this work (Section 1.3). This distinction is relevant to later chapters in which we extract possible biomarkers from arterial pulse waveforms. Furthermore, we provide a summary of the different haemodynamic models that exist in the literature (Section 1.4). We conclude with the aims of this thesis (Section 1.5) and a thesis outline.

1.1 The Cardiovascular System

The cardiovascular system encompasses the blood, systemic and pulmonary circulations, and the heart. We describe anatomical and physiological concepts of the heart and systemic circulation which are relevant to this work.
1.1.1 The Heart

The heart is a hollow muscular organ found between the lungs. It consists of four main chambers. The large left and right ventricles are tasked with pumping blood to the systemic and pulmonary vasculatures, respectively (Fig. 1.1). Above each ventricle is the smaller, thin walled left and right atrium, which act as reservoirs for venous blood, from the pulmonary and systemic systems, respectively. The walls of the four chambers consist mainly of a thick layer of muscle known as the myocardium, surrounded on the outside by a layer of connective tissue and fat (the epicardium) and lined on the inside by a smooth membrane of endothelial
cells (endocardium) [Levick, 2003]. Located within the right atrium wall is the sinoatrial node (SN) which generates a small electrical pulse responsible for the coordinated contraction of the muscles of the heart, known as the cardiac cycle.

The cardiac cycle is segmented into two main phases. The diastolic phase occurs when the muscle wall is relaxed, and the valves separating the atrium and ventricle on both sides are open. Blood flows from the atria into their respective ventricles. The electrical current from the SN passes through the atria wall causing it to contract, forcing the last of the blood into the ventricles; the interconnecting valves then shut to prevent any back flow. We then enter the latter stage of the cardiac cycle, known as systole. During this stage the ventricles contract increasing blood pressure and ejecting blood into the systemic and pulmonary vasculatures. Figure 1.2 shows an example of the flow waveform measured at the aortic root under normal physiological conditions.

![Flow waveform measured at the aortic root.](image)
1.1.2 Vascular System

The vascular system is an elaborate highway of tapering curved elastic tubing that transforms the pulsatile flow of blood that exits the heart, into a continuous blood flow at the periphery. The component vessels of the system are categorised as follows: arteries, capillaries and veins. Arteries supply oxygenated blood around the body to the capillaries. The arterial pressure is kept high due to the distal end of the arterial system bifurcating into many vessels with small diameters, thus forming a large peripheral resistance [van de Vosse & Stergiopulos, 2011]. Within the capillaries is where the oxygen and carbon dioxide exchange occurs. The veins then collect the blood from the capillaries and return it to the heart. As the larger vessels of the arteries begin to branch into vessels with a smaller cross-sectional area, the total cross-sectional area of the vascular bed increases rapidly, as illustrated in Fig. 1.3. Thus, a large surface area is available to enable the efficient diffusion of oxygen and nutrients to the surrounding cells.

The walls of the veins and arteries consist of three layers, tunica intima, tunica media, and tunica adventia (see Fig. 1.4). The dimensions of the artery wall vary significantly through the cardiac cycle and the systemic vasculature, and even from person to person.

Smooth muscle cells, when contracted, are responsible for a stiffening of the vessel wall, and a reduction in the diameter. These cells are present in the tunica media in both arteries and veins. In arteries they are also present in the layer of elastic connective tissue lying immediately outside the tunica media, known as the external elastic lamina. In peripheral arteries the contraction of the artery by the smooth muscle cells has a more profound difference on the diameter of the
artery than at the central vessels. For instance, the femoral artery diameter can experience a 20% artery reduction, compared to only about 5% in the aorta [Caro et al., 2011]. Due to the distensibility of the vessel, the walls expand and contract as the pulsatile motion of blood flows through. The distensibility of the vessel can be considered in part to be attributed to the amount of the elastin and collagen within the vessel wall.

The elastic nature of the vessels results in a phenomenon known as the Windkessel effect [Westerhof et al., 2009]. Compliant vessels act as a buffer for the
pulsatile blood flow from the heart, thus smoothing the flow wave in peripheral vessels (see Fig. 1.5).

1.1.3 The Pulse Wave

The ventricular ejection during systole creates a primary pulse wave that moves away from the heart along the arterial vessels. The speed that this pulse wave travels, which is called pulse wave velocity (PWV), is determined by the mechanical properties of the arterial walls. This forward-travelling wave is reflected at any point of discontinuity e.g. tapering, bifurcations or occlusions. The morphology of the measured pressure pulse waveform, at any given location, is the summation of the forward and reflected pressure pulse waveforms. Hence, the shape of the
Figure 1.5: Windkessel phenomena, where the compliant vessel volume acts as a buffer for the pulsatile blood flow from the heart, similar to a traditional fire engine hose. Taken from Westerhof et al. [2009].

The pressure waveform can be altered by changes in the arterial geometry [McDonald, 1974], vasoconstriction/vasodilation, and cardiac output [Murgo et al., 1980]. For example, a stiffened artery creates a faster travelling pulse wave, and an earlier return of the incident wave at the aortic root. This may cause the reflective wave to arrive during the systolic period as opposed to the diastolic period. This early overlap of the forward- and backward-travelling wave creates a shoulder in the aortic pressure waveform in early systole.

Next we present two techniques available in the clinic to measure the pulse wave non-invasively.
1.1.3.1 Photoplethysmography

The pulse waveform at the digital artery in the finger can be measured using photoplethysmography (PPG). This technique uses an infrared optical transducer. The use of PPG has become a standard means of obtaining blood oxygenation data [Hertzman & Spealman, 1937]. The PPG device consists of a light source and light detector which is either positioned directly opposite (transmission photoplethysmography) or next to (reflective photoplethysmography) the light source.

Extensive research has been undertaken to understand exactly what the PPG signal is measuring. It is believed that the PPG waveform comes from the site of maximum pulsation within the arteriolar vessels, just before the level of the capillaries [Spigulis, 2005; Trefford & Lafferty, 1984]. It has been shown that the PPG is dependent not only on the blood volume (it is called digital volume pulse, DVP, in some studies), but the haematocrit (and haemoglobin concentration) [Challoner, 1979]. Zweifler et al. [1967] found, in individual subjects, the PPG wave to be directly proportional to the digital blood flow over a wide range of environmental conditions. Lindberg et al. [1991] compared PPG measurements at the radial artery against laser doppler flowmetry (LDF). They were able to show that LDF is more sensitive than PPG to changes in skin perfusion that follow a skin temperature change, even though both techniques are supposed to measure the same superficial blood perfusion of the skin. The velocity of blood flow affects the PPG, most likely due to the reorientation of red blood cells [D’Agrosa & Hertzman, 1967; Visser et al., 1976]. The microvascular bed of the finger has capillaries and a large number of arteriovenous anastomoses (a vessel that shunts blood from an artery to a vein in order to bypass a capillary). Kim et al. [1986]; Secker & Spiers
have suggested that the signal from the PPG is from open arteriovenous anastomoses.

Different approaches have been taken to numerically model the PPG waveform: Johansson & Oberg [1999] generated a PPG signal as a linear combination of blood flow and pressure using a lumped parameter model; Hemalatha & Manivannan [2010]; Hemalatha et al. [2010]; Hou et al. [2011] generated PPG signals from the simulated pressure pulse; whereas Alastruey et al. [2009a]; Gircys et al. [2015] used changes in luminal cross-sectional area of the digital vessel to model the PPG signal.

The characteristics of the measured PPG depend on the measurement location, with different sites having differences in timings [Jago & Murray, 1988] and amplitude [Allen & Murray, 2000]. The pulsatile component of the DVP (i.e. the ‘AC’ component) has its fundamental frequency around 1Hz, depending on the heart rate [Allen, 2007]. During diastole the DVP exhibits a characteristic notch. This ‘AC’ component is highly sensitive to changes in the systemic circulation, such as changes in pulse wave reflections and pulse wave velocity of the large arteries [Chowienczyk et al., 1999; Hayward et al., 2002; Millasseau et al., 2002a]. The ‘AC’ component is superimposed onto a ‘DC’ component. This ‘DC’ component varies slowly due to various functions; e.g. respiration [Lindberg et al., 1992; Nilsson et al., 2000], the autonomic nervous system [Nitzan et al., 1998], and thermoregulation [Burton, 1937]. It has been suggested that the respiratory-induced changes to the waveform are caused by the movement of venous blood [Phillips et al., 2012; Walton et al., 2010]. Within this work, we will focus on the ‘AC’ component of the DVP. The amplitude of the PPG waveform is relative to each patient, and as such no standardisation procedure exists to compare the PPG amplitude between
patients [Shelley, 2007].

Figure 1.6: Normalised average of 116 subjects PPG waveform from the digital waveform. Subjects younger than 30 years (N=27), between 30 and 39 years (24), between 40 and 49 years (32), and 50 years of age or older (33). Adapted from Allen & Murray [2003]

In normotensive young patients, the shape of the DVP consists of an early peak during systole which is the result of a dominant forward pressure waveform from the left ventricle. A second, later diastolic peak is due to pulse wave reflections from sites of impedance mismatch. A dicrotic notch is seen during systole in patients with healthy compliant arteries [Dawber et al., 1973; Elgendi, 2012]. As the patient ages there is an elongation in the time of arrival of the systolic peak and a smoothing of the amplitude of the second peak [Allen & Murray, 2003] (as seen in Fig. 1.6).

Work by Takazawa et al. [1998] has shown that the DVP closely resembles the carotid pressure waveform, even under the influence of vasodilator and vasoconstrictor drugs. Augmentation of the DVP is mainly influenced by changes in pressure wave reflections in the torso and lower body [McDonald, 1974]. Thus the DVP PPG waveform provides a noninvasive method to derive cardiovascular properties of the aorta and other central arteries.
PPG measurements at various locations can be used in the assessment of reactive hyperaemia [Simonson et al., 1955], occlusions [Allen et al., 2005; Lynch et al., 1981; Oliva & Roztocil, 1983], and carotid artery disease [Barnes et al., 1977].

![Diagram of arterial pressure](image)

Figure 1.7: Applanation of artery where \(P_e = \text{external pressure}, P_i = \text{internal pressure}, P_t = \text{transmural pressure}, r = \text{radius of curvature}, T = \text{wall tension} \) and \(\mu = \text{wall thickness}. \) Taken from Miyashita [2012].

1.1.3.2 Applanation Tonometry

Applanation tonometry is a technique that allows for a continuous non-invasive measurement of the arterial pressure waveform. If the artery is assumed to be a cylindrical thin walled vessel, then it is possible to apply Laplace’s law to derive a measure of pressure (see Fig. 1.7). When a transducer applanates the vessel wall the radius of the wall curvature becomes infinite thus the internal pressure \((P_i) \) is equal to the pressure applied by the transducer \((P_e) \).

The successful applanation of the arterial wall is location dependent, the artery
considered must be superficial and supported by a bone structure beneath. It is noted that the brachial site is not suitable for applanation tonometry [O’Rourke & Adji, 2010]. Under optimal conditions, the applanation tonometry waveform measured non-invasively is nearly identical to the waveform measured invasively using a high-fidelity transducer [Chen et al., 1996; Kelly et al., 1989].

Applanation tonometry provides a continuous pressure waveform. However, the amplitude must be calibrated by means of an external method. The calibration method used is dependent on the measurement site. Pauca et al. [1992] have shown it is best to use the diastolic and mean pressure at the brachial cuff when calibrating the radial pressure waveform.

1.2 Diseases of the Cardiovascular System

CVD is a general term for all diseases of the heart and vascular system; e.g. stroke, cardiomyopathy, atrial fibrillation, congenital heart disease, venous thrombosis, aortic aneurysm, and coronary artery disease. Overall CVD is estimated to cost Europe €196 billion each year [Nichols et al., 2013]. The underlying causes vary according to each condition.

Within this section we will present two cardiovascular diseases relevant to this thesis: diabetes and hypertension (Sections 1.2.1 and 1.2.2). Furthermore, we will look at the interactions between these two disease states (Section 1.2.3).

1.2.1 Hypertension

Hypertension is one of the most important preventable causes of premature morbidity and mortality in the UK. It affects a quarter of the adult population [Krause
et al., 2011]. The causes of hypertension can be environmental; alcohol, physical inactivity and diet related [Forman et al., 2009; Hall, 2003; Saunders, 1987] or genetic [Beevers et al., 2001]. Hypertension is characterised by left ventricular hypertrophy and arterial wall stiffening [Fouad et al., 1984; Wolinsky, 1972]. Physical properties of the vasculature such as aortic stiffness affect cardiac mechanics (afterload) and, therefore, it is important to be able to quantify vascular properties to assess cardiac function.

In this thesis, hypertension is defined as having a blood pressure measured in the clinic of systolic pressure greater than 140 mmHg or diastolic pressure greater than 90 mmHg, as recommended by UK NICE guidelines [Krause et al., 2011].

The non-invasive gold standard for clinical measurement of blood pressure has always been with a mercury sphygmomanometer at the brachial artery [Pickering et al., 2005]. However as these antiquated devices are being phased out, the accuracy of newer devices has been questioned, with measured inaccuracies of aneroid sphygmomanoeters ranging from 1% [Canzanello et al., 2015; Yarows & Qian, 2001] to 44% [Mion & Pierin, 1998]. Thus, the importance of indices other than the traditional measurements of systolic, diastolic and mean pressure are highlighted.

In hypertension not only is the absolute value of blood pressure increased, but so is the shape of the pressure waveform. Stiffer arteries cause an earlier return of a larger reflected pulse wave which augments the systolic pressure waveform (as seen in Fig. 1.8). At peripheral locations, Hertzman & Spealman [1937] reported an increase in the crest time, loss of the rebound wave and triangulation of the DVP.
Figure 1.8: Normal (left) and hypertensive (right) pressure waveforms. Arrow 1 indicates the increase in mean pressure from the increased resistance in the small arteries. Arrow 2 indicates the increase in the systolic incident wave caused by reduced aortic compliance. Arrow 3 shows the augmentation of pressure from the arrival of an earlier reflected waveform. Taken from Levick [2003].

1.2.2 Diabetes

Diabetes is most prevalent in the Western Pacific Region (132 million), followed by Southeast Asia (71 million), Europe (53 million), North America and Caribbean (38 million), Middle East and North Africa (33 million), South and Central America (25 million), and Africa (15 million) [Whiting et al., 2011]. The growing prevalence of the disease is partially due to the rise in obesity levels seen globally [Hossain et al., 2007].

Diabetes mellitus (DM) is defined as a group of metabolic diseases primarily characterised by chronic hyperglycaemia (excess of glucose in the bloodstream) affecting both the macrocirculation and microcirculation [Alberti & Zimmet, 1998; American Diabetes Association, 2005]. The two categories of diabetes are type I, and type II. A patient with type I diabetes would be unable to produce insulin in the pancreas, and is treated with an insulin replacement. A type II patient would produce an insufficient amount of insulin and have an increase in insulin
resistance. Treatment in this case can be pharmacological, or involve modifications to diet and lifestyle.

Cardiovascular disease may predate diabetes (see Fig. 1.9) [Cruickshank & Wright, 1990; Cruickshank et al., 2002; Haffner et al., 1990, 2000; Paini et al., 2006]. It is known that arterial stiffness is a predictor of diabetes before the onset of clinical diabetes [Atabek et al., 2006; Giannattasio et al., 1999; Haller et al., 2004; Parikh et al., 2000; Stakos et al., 2005]. Diabetic microvascular disease is often explained as accelerated aging [McDonald, 1974]. Cameron et al. [2003] calculated an arterial age difference of 14 years between diabetic and their non diabetic counterparts.

![Figure 1.9: Pathophysiology of diabetes mellitus with time](image)

Figure 1.9: Pathophysiology of diabetes mellitus with time [Diabetes Advocates, 2015].

It has long been identified that patients with diabetes experience abnormalities in the pressure pulse waveform, such as diminished incident waves during diastole [Lax et al., 1959] or reduced oscillatory compliance [McVeigh et al., 1993]. The
augmentation index is a measure of arterial stiffness derived from the ascending aortic pressure waveform. Patients suffering from diabetes type I and type II may also have an increased augmentation index [Brooks et al., 2001; Fukui et al., 2003; Ravikumar et al., 2002; Westerbacka et al., 2005; Wilkinson et al., 2000], as seen in Fig. 1.10. However Climie et al. [2013]; Lacy et al. [2004a]; Zhang et al. [2011] found that there was no correlation between the augmentation index and diabetes status when compared to age-matched non-diabetic counterparts.

Figure 1.10: Typical synthesised aortic waveforms from diabetics (right) and in age and sex matched normotensive patients (left). Taken from Wilkinson et al. [2000].

1.2.3 Hypertension and Diabetes

Diabetes has long been associated with cardiovascular disease [Epstein & Sowers, 1992; Kannel & Castelli, 1979; Kannel & McGee, 1979; Pell & Alonzo, 1967]. A person with hypertension is almost 2.5 times more likely to develop type II diabetes than in their normotensive counterpart [Gress et al., 2000]. Furthermore,
the risk of CVD is four-fold higher in patients with hypertension and diabetes compared to a non-diabetic normotensive subject [Hu et al., 2007; Stamler et al., 1993]. Arterial stiffness increases under both conditions, which often precedes microvascular events [Bella et al., 2001; Benetos et al., 1997]. The mechanisms by which vascular stiffness increases within the diabetic subgroup is not fully known [Franklin, 2002; Henry et al., 2003; Schram et al., 2004]. It has been hypothesised that type II diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelium-related mechanisms [Bruno et al., 2012].

1.3 Risk Factors and Risk Markers

Cardiovascular risk factors have been derived from epidemiological studies for over half a century. They help quantify the extent of CVD [Dawber et al., 1961]. Risk factors are defined as having not only predictive but also causal value [Stampfer et al., 2004]. The age of a patient is still the best determinant for CVD [Najar et al., 2005]. Other traditional risk factors are gender, family history, blood pressure, cholesterol lipid, weight, diet, hypertensive status, and smoking [Wang, 2008].

Risk markers (biomarkers) are distinct from risk factors, as they are not assumed to play a direct causal role in disease [Wang, 2008]. A large area of research is now focussed on finding new biomarkers that provide added value to the diagnostic clinician or reveal information on the underlying pathophysiology. A number of biomarkers have been identified so far, including carotid intima-media thickness [Leary, 1999], flow mediated dilation [Yeboah et al., 2009], and arterial stiffness [Mitchell et al., 2010]. In this section we will focus on vascular biomarkers relevant
to this thesis.

It is noted that additional tools exist to evaluate arterial stiffness. Wave intensity analysis (WIA) is derived by applying the method of characteristics to the 1-D equations of blood flow in elastic vessels [Parker & Jones, 1990]. WIA has been used to assess the working condition of the heart [Davies et al., 2006].

1.3.1 Pulse Wave Velocity

Pulse wave velocity (PWV) is considered to be the gold standard method of assessing arterial stiffness [Laurent et al., 2006]. PWV is a regional measure of arterial stiffness and is defined as the speed that the pressure and flow wavefronts travel within a flexible vessel when the velocity of blood flow is equal to zero. In general, the PWV is higher in more peripheral arteries. In the physiological setting, where vessel wall material properties are constantly varying, it is possible to take an average estimate of the PWV along a given vessel. The most common method of measuring PWV is to divide the distance between the carotid and femoral measurement sites across the body (measured using a tape) by the time delay between the arrival of pressure waveforms at the two sites [Mitchell et al., 2008; Paini et al., 2006; Vermeersch et al., 2010] (see Fig. 1.11). Other possible measuring sites include the brachial-ankle, carotid-radial, and carotid-ankle [Gamella-Pozuelo et al., 2015; Zhang et al., 2011].

PWV has been shown to be dependent on age and to be driven by changes in blood pressure [McEniery et al., 2010]. It has been shown to be an independent predictor of cardiovascular mortality [Blacher et al., 1999; Cruickshank et al., 2002; Laurent et al., 2001, 2003; Mattace-Raso et al., 2006; Meaume et al., 2001; Safar

19
Figure 1.11: Pulse wave velocity determination for the carotid to femoral site by the foot-to-foot method. Where $dL =$distance travelled by waveform, and $dt =$time difference between the foot of the two waveforms.

et al., 2002; Sutton-Tyrrell et al., 2005; Willum-Hansen et al., 2006]. PWV is now included in the ESH/ESC guidelines for the management of arterial hypertension [Mancia & The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC), 2013] and has been shown to be reliably reproducible in the clinical setting [Asmar et al., 1995, 2001]. However, a reliable method for extracting central PWV from peripheral PPG signals must be developed, as of now, a robust methodology has not been determined [Elgendi, 2012].
1.3.2 Augmentation Index

The augmentation index (Aix) is primarily a measure of wave reflections at a given measuring site. It is commonly used as a surrogate for arterial stiffness since it is associated with PWV [Brown & Brown, 1999; Liang et al., 1998]. Aix has also been shown to be influenced by left ventricular contractility [Jones & Sugawara, 1993; Laurent et al., 2006] and heart rate [Brown & Brown, 1999; Cameron et al., 1998; Segers et al., 2006]. A schematic representation of how the Aix is calculated for different types of arterial pressure waveforms is given in Fig. 1.12. For the computation of Aix it is necessary to identify the time of arrival of the reflected pressure pulse for which either the shoulder or inflection point can be used [Segers et al., 2007]. It is noted that the shoulder and inflection points are not always easily identifiable.

Aix has been shown to be an independent predictor of cardiovascular disease, coronary artery disease [Hayashi et al., 2002; Patvardhan et al., 2011], cardiovascular events such as myocardial infarction, death and restenosis [Weber et al., 2005], and all-cause mortality [London et al., 2001; Vlachopoulos et al., 2010]. Additionally, Aix has been shown to correlate with the rate of restenosis after coronary stenting [Ueda et al., 2004].

1.3.3 Stiffness Index

The stiffness index (SI) is derived from contour analysis of the peripheral pulse waveform; e.g. the DVP measured in the finger [Millasseau et al., 2006]. SI is calculated by dividing the height of the patient by the time delay between the two characteristic peaks in the DVP waveform (see Fig. 1.13). The first peak of the
Figure 1.12: Calculation of augmentation index (ratio of peak height above the shoulder of the wave to the pulse pressure) in three types of aortic pressure waveforms generally seen in young (left), older (centre), and old adults (right). They are described as types A, B and C waveforms, respectively. Adapted from Rourke & Pauca [2004].

DVP is assumed to be related to a forward-travelling wave from the heart, and the second peak (the reflected wave) to be dependent on the PWV in the arterial system [Chowienczyk et al., 1999; Millasseau et al., 2002b; Morikawa, 1967].

SI has been correlated with birth weight [Broyd et al., 2005], age [Millasseau et al., 2003], body fat content [Wykretowicz et al., 2007], and vascular disease [Chen et al., 2005].

Figure 1.13: Measured DVP waveform with annotated time delay (PPT) between diastolic and systolic peaks. Stiffness Index (SI) calculated as: SI=h/PPT, where h is the height of the patient. Reproduced from Millasseau et al. [2006].
1.4 Numerical Modelling

Stemming from the concepts of conservation of mass and momentum, it is possible to mathematically model the pressure and flow waveforms within the cardiovascular system. Several modelling approaches can be used to simulate arterial hemodynamics. In this section we will outline the three-dimensional (3-D) (Section 1.4.1), one-dimensional (1-D) (Section 1.4.2), and zero-dimensional (0-D) (Section 1.4.3) formulations.

1.4.1 3-D Models

The governing equations of 3-D haemodynamics are based on the physical principles of conservation of mass and momentum within any given parcel of fluid. They are called the Navier-Stokes equations. The flexibility of the arterial wall needs to be simulated using a constitutive law. This method allows for an accurate portrayal of the geometry of the blood vessel and provides 3-D flow and pressures. For example, 3-D models enable computation of the shear stresses experienced at an artery wall [Perktold et al., 1991], and the blood flow around obstacles within the vessel; e.g. around plaque [Jabbar et al., 2012; Ohayon et al., 2005]. Three-dimensional modelling has also been used extensively to simulate the forces experienced at an aneurysm (a balloon like bulge in the vessel wall) in order to improve treatment and care of the condition [Di Martino et al., 2001; Groden et al., 2001; Hatakeyama et al., 2001; Vorp et al., 1998], and to gain insight into the aortic hemodynamics of patients with aortic dissection [Alimohammadi et al., 2014; Chen et al., 2013; Karmonik et al., 2008, 2010].

Due to the high computational cost of 3-D numerical models, only a portion of
the vasculature, or region of interest, is normally considered. Boundary conditions are typically provided in the form of 0-D or 1-D models.

1.4.2 1-D Models

Fluid flow in 1-D is governed by a reduced form of the incompressible continuity and Navier Stokes equations [Shi et al., 2011]. 1-D models have the benefit of being able to capture the propagation of pressure and flow waveforms in the arterial network, with a modest computational cost.

Modelling of cardiovascular dynamics in 1-D can be solved by either frequency- or time-domain techniques. In the frequency domain the governing equations are linearised, hence the convective acceleration term is neglected. This term is relevant when there is tapering of the vessel well [Quick et al., 2001; Westerhof et al., 1969]. In the time domain, the method of characteristics can be applied to transform the nonlinear 1-D governing equations into a series of ordinary differential equations (ODE) solved along the characteristic paths [Whitham, 2011]. Alternatively, the governing equations can be solved using finite element methods [Reymond et al., 2009; Sherwin et al., 2003a; Smith et al., 2002]. Further, a spectral method can be applied to solve the governing equations [Bessems et al., 2008].

One-dimensional models are often focussed on the larger vessels of the arterial circulation [Blanco et al., 2014; Hughes & Lubliner, 1973; Müller & Toro, 2013; Mynard & Nithiarasu, 2008; Olufsen, 1999; Reymond et al., 2009; Sherwin et al., 2003a; Stergiopulos et al., 1992], but can also represent smaller subsections of the arterial vessels [Bessems et al., 2008; Formaggia et al., 2003; Leguy et al., 2011;
1.4.3 0-D Models

0-D models (or lumped parameter models) are useful in simulating the global haemodynamics of the arterial system with a relatively small computational cost. In 1899, Frank first applied a 0-D model to the arterial system – the two-element Windkessel – to describe the shape of the pressure waveform [Frank, 1899]. In this model, the entire arterial vasculature is simulated by a capacitor and a resistor. From this simple model, a huge array of lumped parameter models have been investigated ranging from the simple three-element Windkessel model of the aorta, used to calculate total compliance from pressure and flow measurements [Westerhof et al., 2009], to other more extensive, multi-compartmental 0-D models used to represent the entire arterial system [Liang & Liu, 2005; Olufsen et al., 2002; Pietrabissa et al., 1996; Reisner & Heldt, 2013]. From these multi-compartmental models we can 1) gain a greater understanding of the role of heart and vascular properties in arterial haemodynamics; 2) learn about the nature of reflected waves contribution to pressure and flow waveforms; and 3) provide a model of haemorrhage, dehydration and other peripheral flow regulatory mechanisms [Avolio, 1980; Lanzarone et al., 2007; Liang & Liu, 2005; Olufsen et al., 2000; Reisner & Heldt, 2013; Westerhof et al., 1969]. Lumped parameter models are not suitable for problems concerning spatially distributed parameters [Westerhof et al., 2009].
1.5 Motivation and Objectives

The goal of this thesis is to assess computationally several cardiovascular biomarkers (or indices) that can be calculated from systemic pulse waveforms, focusing on the DVP waveform. By analysing pulse wave indices of cardiovascular health derived from large epidemiological studies, we observed that indices used clinically have regions of hypothesised origin which are too complicated to prove absolutely in vivo. In this thesis, we build confidence in using cardiovascular biomarkers through blood flow modelling. We create a novel 120-artery 1-D/0-D model of pulse wave propagation in the aorta and larger systemic arteries, including peripheral vessels of the head and upper limbs where the PPG wave can be measured. We validate this model qualitatively. We then perform an extensive sensitivity analysis to quantify the changes seen in the peripheral pulse wave due to variations in cardiac and vascular properties. We are then able to numerically quantify how PPG biomarkers relate to the underlying physical properties of the cardiovascular system. Several diseased states are simulated, including hypertension, diabetes, and combined hypertension and diabetes.

An important contribution of this thesis is the derivation of a novel methodology for optimising the number of arterial segments for a given 1-D model problem. This tool is motivated by the difficulty to measure all the parameters required to calibrate 1-D models in the clinic. This novel methodology could allow others to speed up their development process of 1-D blood flow simulations.

Within this work we will provide novel tools to help bridge the gap between clinical and computational approaches, and will investigate several clinically relevant applications of 1-D blood flow modelling.
1.6 Thesis Outline

Following this introduction, Chapter 2 describes the mathematical formulation of the 1-D/0-D numerical framework used in this thesis to simulate arterial blood flow in the systemic circulation. Chapter 3 presents the new 1-D/0-D model of arterial blood flow which simulates the DVP wave and forms the basis of the research carried out in Chapters 3 to 5. Chapter 3 also contains a local sensitivity analysis of the computed DVP wave at the finger to cardiovascular properties. In Chapter 4, the 1-D/0-D model is used to investigate whether the shape of the PPG waveform measured in the finger could be used to distinguish among subjects with diabetes, hypertension, and combined diabetes and hypertension. For this study, a virtual (computed) population of pulse waveforms is created, which includes healthy and diseased subjects. The population is parametrised using a global sensitivity approach. Chapter 5 provides a novel methodology to optimise the number of arterial segments for 1-D/0-D modelling. Lastly, Chapter 6 summarises the thesis contributions and suggests directions for future work.
Chapter 2

Mathematical Formulation

The application of numerical simulations to model blood flow in the human arterial system is now a widespread technique. The types of modelling approaches fall into three main categories: (1) 3-D models which solve a mixed set of nonlinear, partial differential equations known as the incompressible Navier Stokes equations which can be parabolic, hyperbolic or elliptical; (2) 1-D models which consist of a system of predominantly hyperbolic partial differential equations; and (3) 0-D models which are described by finite dimensional ordinary differential equations. Often the three model variants are coupled together to create a multi-scale computational frameworks; e.g. 3-D/0-D [Vignon-Clementel et al., 2010], 3-D/1-D/0-D [Blanco et al., 2012b], and 1-D/0-D [Willemet et al., 2011].

A 1-D/0-D model has the benefits of containing vital information on the spatial geometry and material properties of vessels whilst maintaining a modest computational cost. For this work we have chosen this modelling approach; a well researched tool which has been validated against in vitro data (e.g. against a polyurethane vessel model in an open water filled container and an experimental
silicone tube model, mimicking the anatomy and physiology of the human vasculature in the arm) [Alastruey et al., 2011; Bessems et al., 2008; Boileau et al., 2015; Huberts et al., 2012c; Matthys et al., 2007; Saito et al., 2011], in vivo data (e.g. against data obtained from applanation tonometry, transcranial ultrasound and phase-contrast-MRI) [Bollache et al., 2014; Leguy et al., 2010; Mynard & Smolich, 2015; Olufsen et al., 2000; Reymond et al., 2011; Steele et al., 2003; Stettler et al., 1981], and 3-D simulations [Mynard & Nithiarasu, 2008; Xiao et al., 2013].

This chapter details the 1-D mathematical formulation of blood pressure and flow in the arteries of the cardiovascular system. It begins by asserting the necessary assumptions to reduce an arterial segment to a 1-D model vessel. Next, the physical principles of conservation of mass and momentum are applied to this vessel to derive the governing 1-D equations (Sections 2.1.2 and 2.1.3). To solve the system of equations it is then necessary to include changes in blood pressure and luminal cross-sectional area in the vessel (Section 2.1.4). The nonlinear governing equations are then manipulated to obtain the characteristic variables of the system (Section 2.2). The linearised 1-D equations are introduced in Section 2.3 and the Windkessel and other lumped parameter 0-D models utilised within this thesis are described in Section 2.4. We then describe the boundary and junction conditions required to create 1-D/0-D arterial networks (Section 2.5). This chapter concludes with a brief overview of numerical schemes used in the literature to solve the 1-D equations.

Different approaches have been taken to numerically model the PPG waveform, for the purpose of this study, we will assume that the PPG signal can be represented by the cross-sectional area at the digital artery.
2.1 1-D Governing Equations

Within this section we will derive the necessary equations to model blood flow in a system of arteries. Here we will derive the governing equations starting from a 1-D model control volume analysis. It is noted that the 1-D governing equations can also be obtained by integrating the 3-D Navier-Stokes equations over a given vessel cross-section [Formaggia et al., 2001].

2.1.1 1-D Model Assumptions

To derive our 1-D blood flow equations we consider a vessel of length l, as seen in Fig. 2.1, which is independent of time, with centreline $s(x)$. The cross-sectional area normal to the centreline is denoted by $A(s(x), t)$, and the wall thickness by $h(s)$. We assume that the local curvature is small enough so that the axial direction can be described by $x = (x, 0, 0)$. Along the centreline we define the area of each cross section as $A(x, t) = \int_S d\sigma$. Where S is the cross section and $d\sigma$ is a differential element of area. We do not consider the effect of gravity on the blood flow.

For the purpose of our study we have taken arterial wall thickness to be 10% of the internal artery radius [Caro et al., 2011]. We define the blood flow velocity ($U(x, t)$) as an average over each cross section, hence $U(x, t) = \frac{1}{A} \int_S \hat{u}(x, \sigma, t)d\sigma$, where $\hat{u}(x, \sigma, t)$ is the velocity field within a fixed x position. Blood flow is considered to be laminar, which is a reasonable assumption due to the Reynolds number being below 2,000 through the arterial system, in normal conditions (when mean arterial flow is considered) [Zamir, 2000]. Additionally we define the average internal pressure over the cross section as $p(x, t) = \frac{1}{A} \int_S \hat{p}(x, \sigma, t)d\sigma$. Volume flux is defined along the x axis as $Q(x, t) = A(x, t)U(x, t)$. The fluid within the vessel
Figure 2.1: Layout of a simple compliant tube with cross-sectional area A, flow velocity U, vessel length l, and vessel wall thickness h. General orientation (left) and 1-D model orientation (right). Adapted from Alastruey [2006].

is assumed to be incompressible and Newtonian, with a uniform blood density [Khanafer et al., 2006].

2.1.2 Mass Conservation

The rate of change of mass within the portion of vessel described in Section 2.1.1 is considered equal to the mass flux at the boundary. The volume is defined as $V(t) = \int_0^l A(x,t) \, dx$, and we assume that there is no fluid loss at the vessel wall. Hence we have

$$\rho \frac{dV(t)}{dt} = \rho (Q(0,t) - Q(l,t)), \quad (2.1)$$

where ρ is the density of the blood. Similar to Alastruey [2006] we take $\rho = 1050$ Kg / m3.

Additionally, $V(t) = \int_0^l A(x,t) \, dx$, and $Q(l,t) - Q(0,t) = \int_0^l \frac{\partial Q}{\partial x} \, dx$. Substituting
these known quantities into Eq. (2.1) yields

\[\rho \frac{d}{dt} \int_0^l A(x,t)dx = -\rho \int_0^l \frac{\partial Q}{\partial x} dx. \]

(2.2)

Assuming that the length \(l \) is independent of time \(i.e. \) the vessel is tethered, we get

\[\rho \int_0^l \left(\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} \right) dx = 0. \]

(2.3)

The integrand from Eq. (2.3) holds true for all values of \(l \in \mathbb{R} \). Hence,

\[\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0. \]

(2.4)

2.1.3 Momentum Conservation

Considering the same vessel as in Section 2.1.2, we assume that there is no flux in the \(x \)-direction through the walls of the vessel. Conservation of momentum states that the rate of change of momentum within the control portion of a vessel plus the net flux of momentum out is equal to the applied forces on the control volume. Hence,

\[\frac{d}{dt} \int_0^l \rho Q dx + (\alpha \rho QU)_t - (\alpha \rho QU)_0 = F, \]

(2.5)

where \(F \) is the applied forces in the \(x \)-direction on the control volume, and \(\alpha \) is a momentum flux correction factor which accounts for the nonlinear section integration of the local velocity \(\hat{u} \);

\[\int_S \rho (\hat{u})^2 d\sigma = \alpha \rho U^2 A = \alpha \rho QU. \]

(2.6)
The momentum flux correction factor (α), defined as

$$\alpha = \frac{1}{U^2 A} \int_S (\hat{u})^2 d\sigma,$$

(2.7)

allows for \hat{u} to be non-constant across a given cross-sectional area: in a straight tube we would expect for the flow velocity to be highest in the centre of the tube, and lowest at the edges. To correct for this nonlinearity, we calculate α by assuming a shape of the velocity profile. For a uniform velocity profile, $\alpha = 1$; for a parabolic profile, $\alpha = \frac{4}{3}$. Within this thesis we will by default use $\alpha = 1.1$ as a compromise fit to experimental data [Smith et al., 2002]. This assumption provides an axisymmetric and constant velocity profile that satisfies the no-slip condition.

The applied forces, F, are a pressure at either end of the vessel produced by the fluid, a pressure force at the wall boundary (the side of the vessels), and a frictional force per unit length, f; i.e.

$$F = (pA)_0 - (pA)_l + \int_0^l \int_{\partial S} \hat{p}n_x ds dx + \int_0^l f dx,$$

(2.8)

where ∂S is the boundary of a section S and n_x is the x component of the surface normal. The viscous term in Eq. (2.8) can be simplified by applying the divergence theorem and assuming uniform cross-sectional pressure and the tube being axisymmetric [Sherwin et al., 2003a], which leads to

$$\int_0^l \int_{\partial S} \hat{p}n_x ds dx = \int_0^l p \frac{\partial A}{\partial x} dx.$$

(2.9)
By combining the above information we get

$$\frac{d}{dt} \int_0^l \rho Q dx + (\alpha \rho QU)_t - (\alpha \rho QU)_0 = (pA)_0 - (pA)_l + \int_0^l p \frac{\partial A}{\partial x} dx + \int_0^l f dx, \quad (2.10)$$

which can be rearranged as

$$\rho \int_0^l \left(\frac{\partial Q}{\partial t} + \frac{\partial (\alpha QU)}{\partial x} \right) dx = \int_0^l \left(-\frac{\partial (pA)}{\partial x} + \frac{p \partial A}{\partial x} + f \right) dx. \quad (2.11)$$

Additionally, by applying the partial derivative to the first term on the right hand side of Eq. (2.11),

$$\frac{\partial (pA)}{\partial x} = p \frac{\partial A}{\partial x} + A \frac{\partial p}{\partial x}. \quad (2.12)$$

Hence, the second term on the right hand side of Eq. (2.11) is cancelled out. Once again the interval (0, l) is arbitrary and our derivation will hold for any $l \in \mathbb{R}$.

Thus, we can simplify Eq. (2.11) to

$$\frac{\partial Q}{\partial t} + \frac{\partial (\alpha QU)}{\partial x} + \frac{A \rho}{\partial x} \frac{\partial p}{\partial x} = f \frac{\rho}{\partial x}. \quad (2.13)$$

We can write Eq. (2.13) in terms of variables (A,U),

$$\frac{\partial (AU)}{\partial t} + \frac{\partial (A U^2)}{\partial x} + A \frac{\partial p}{\rho \partial x} = f \frac{\rho}{\partial x}. \quad (2.14)$$

which is rearranged

$$U \left\{ \frac{\partial A}{\partial t} + \frac{\partial (UA)}{\partial x} \right\} + (\alpha - 1) U \frac{\partial (UA)}{\partial x} + A \left\{ \frac{\partial U}{\partial t} + \alpha U \frac{\partial U}{\partial x} \right\} = - \frac{A \partial p}{\rho \partial x} + f \frac{\rho}{\partial x}. \quad (2.15)$$

We note that the first bracketed expression is equal to the mass conservation
equations (Eq. (2.4)), hence rearranged we get

\[
\frac{\partial U}{\partial t} + (2\alpha - 1)U \frac{\partial U}{\partial x} + (\alpha - 1) \frac{U^2 A}{A} \frac{\partial A}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{f}{\rho A}.
\] (2.16)

Following Brook et al. [1999] we neglect the convective inertia terms \((2\alpha - 2)U \frac{\partial U}{\partial x}\) and \((\alpha - 1) \frac{U^2 A}{A} \frac{\partial A}{\partial x}\). The convective inertia terms account for the fact that the velocity profile is not flat. These terms are much smaller than the rest of the terms in the momentum equation, especially in large arteries where the velocity profile is close to flat under normal physiological conditions, and hence, \(\alpha\) is close to 1 [Caro et al., 2011]. In more peripheral arteries the velocity profile becomes more parabolic \((\alpha = \frac{4}{3})\), and hence this assumption is less applicable. Hence, Eq. (2.16) is reduced to

\[
\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{f}{\rho A}.
\] (2.17)

The viscous term \(f\) is derived by integrating the incompressible 3-D Navier-Stokes equations [Smith et al., 2002],

\[
f = 2\mu A \frac{\partial U}{\partial r} \bigg|_R,
\] (2.18)

where \(\mu\) is the viscosity of the blood which we assume to be constant and equal to \(4 \cdot 10^{-3} Pa \cdot s\). If we were to consider an inviscid fluid then we would set \(f = 0\). In this work we assume a velocity profile adopted by Smith et al. [2002] which is of the form

\[
\hat{u}(x, \sigma, t) = \frac{\gamma + 2}{\gamma} U \left[1 - \left(\frac{r}{R}\right)^\gamma\right],
\] (2.19)

where \(r\) is the radial component and \(\gamma\) is a constant for a particular flow profile.
Equation (2.19) defines a blunt axial velocity profile characteristic of oscillatory flow. Substituting Eq. (2.19) into Eq. (2.7) yields

\[\gamma = \frac{2 - \alpha}{\alpha - 1}. \]

(2.20)

Therefore, Eq. (2.19) can be expressed with respect to \(\alpha \) as

\[\hat{u} = \frac{\alpha}{2 - \alpha} U \left[1 - \left(\frac{r}{R} \right)^{\frac{2-\alpha}{\alpha-1}} \right]. \]

(2.21)

In this thesis \(\gamma = 9 (\alpha = 1.1) \) as a compromise fit to experimental data obtained at different points of the cardiac cycle [Smith et al., 2002]. Substituting Eq. (2.21) into Eq. (2.18) yields

\[f = -22\mu \pi U. \]

(2.22)

2.1.4 Pressure-Area Relationship

To close the system of equations it is necessary to develop a relationship between pressure \((p) \) and area \((A) \). There are various tube law models that have been used in the literature: linear pressure-area models [Raines et al., 1974], nonlinear pressure-area models [Čanić & Kim, 2003; Formaggia et al., 2003; Olufsen, 1999; Payne, 2004; Sheng et al., 1995; Sherwin et al., 2003b; Smith et al., 2002; Stergiopulos et al., 1992; Urquiza et al., 2006; Wan et al., 2002] and nonlinear viscoelastic models accounting for the viscoelasticity of the vessel wall [Alastruey et al., 2011; Formaggia et al., 2003; Kitawaki & Shimizu, 2006; Reuderink et al., 1989; Reymond et al., 2011]. In Sections 2.1.4.1 and 2.1.4.2 an elastic and viscoelastic tube law model is introduced using a linear constitutive law resulting in a nonlinear
pressure-area relationship.

We present two different tube laws within this chapter, a nonlinear elastic tube law (used in Chapter 5) and a nonlinear visco-elastic tube law (used in Chapters 3 and 4). A viscoelastic tube law reduces the high frequency oscillations seen in purely elastic tube laws; thus a better approximates human pressure and flow waveforms [Alastruey et al., 2011]. However this benefit must be weighed against the added complexity when estimating additional parameters. Reymond et al. [2009] have shown the importance of using a viscoelastic term when simulating the cerebral circulation, hence why it is used in Chapters 3 and 4. The theory developed in Chapter 5 currently only extends to an elastic tube law.

2.1.4.1 Non-Linear Elastic Tube Law

We consider a cylindrical vessel with internal radius \(R_i \) and external radius \(R_e \), and length \(l \) (as seen in Fig. 2.2). Wall thickness, \(h \), is defined as \(h = R_e - R_i \).

There are two opposing forces: the force due to the circumferential stress, \(hlT_\theta \), and the force due to the intraluminal pressure, \(P_i \), which acts against the external pressure, \(P_e \). Since the sum of these two forces must be balanced, we get,

\[
T_\theta = \frac{P_i R_i - P_e R_e}{h}.
\] (2.23)

In this work, we take the arterial vessel wall to be thin, thus \(R_e \approx R_i \), and

\[
T_\theta = \frac{(P_i - P_e)R_i}{h}.
\] (2.24)

To calculate the longitudinal stress \(T_x \), we consider the forces in Fig. 2.2. The
stress T_x acts longitudinally and has a resultant force equal to $2\pi R_i h$, the internal pressure is a force equal to $(P_e - P_i)\pi R_i^2$. Hence the longitudinal stress, assuming the vessel wall is thin is

$$T_x = \frac{(P_e - P_i)R_i}{2h}. \quad (2.25)$$

Comparing Eqs. (2.24) and (2.25) we see that $2T_x = T_\theta$.

Poisson’s ratio, ν, is the ratio between the strain in the circumferential direction to that in the longitudinal direction. Since the arterial wall is isotropic we set ν to be constant [Weizsacker & Pinto, 1988].

The blood vessel is composed of elastin and collagen fibres, which leads to a nonlinear stress-strain curve. At low strain levels there is a purely elastic response, but as the strain increases more collagen fibres are activated, causing a rise in the stress-strain curve. It is assumed that radial stress is equal to zero. For linearly elastic material we assume the material obeys Hooke’s law, where the
stress is related to the strain in both the longitudinal and circumferential direction through the Young’s modulus, \(E \). The resultant circumferential strain, \(\epsilon_\theta \), takes the following form,

\[
\epsilon_\theta = \frac{1}{E} (T_\theta - \nu T_x).
\]
(2.26)

Similarly the resultant longitudinal strain, \(\epsilon_x \), is

\[
\epsilon_x = \frac{1}{E} (T_x - \nu T_\theta).
\]
(2.27)

If we stipulate that the elongation of the tube is zero; i.e. the vessel is tethered in the longitudinal direction \((\epsilon_x = 0)\), then the circumferential strain becomes

\[
\epsilon_\theta = \frac{1}{E} (T_\theta (1 - \nu^2)).
\]
(2.28)

Since the circumferential strain is defined as \(\epsilon_\theta = \frac{R - R_0}{R_0} = \frac{\sqrt{A} - \sqrt{A_0}}{\sqrt{A_0}} \), we get

\[
\frac{1}{E} (T_\theta (1 - \nu^2)) = \frac{\sqrt{A} - \sqrt{A_0}}{\sqrt{A_0}}.
\]
(2.29)

Substituting Eq. (2.29) into Eq. (2.23) yields

\[
\frac{1}{E} \left(\frac{(P_i - P_e) R_i}{h} \right) (1 - \nu^2) = \frac{\sqrt{A} - \sqrt{A_0}}{\sqrt{A_0}}.
\]
(2.30)

Rearranging and allowing for \(A_0 = \pi R_i^2 \) we get

\[
P_i = P_e + \frac{\beta}{A_0} (\sqrt{A} - \sqrt{A_0}), \quad \beta = \frac{\sqrt{\pi h_0 E}}{(1 - \nu^2)}.
\]
(2.31)
2.1.4.2 Non-Linear Viscoelastic Tube Law

Arterial walls exhibit viscoelastic behaviour which can be modelled with different mathematical forms [McDonald, 1974]. Hasegawa & Kanai [2004]; Learoyd & Taylor [1966] have shown the elastic modulus of the artery increases with frequency. The Kelvin-Voigt model has been shown to well model the viscoelastic properties of the canine aorta, and human femoral and carotid arteries [Armentano et al., 1995a,b; Bauer et al., 1979]. The Kelvin model is the simplest viscoelastic model that captures effects of creep, stress relaxation, and storage of strain energy at equilibrium [Valdez-Jasso et al., 2009]. The resultant viscoelastic tube law is

\[P_i = P_e + \frac{\beta}{A_0} (\sqrt{A} - \sqrt{A_0}) + \frac{\Gamma}{A_0 \sqrt{A}} \frac{\partial A}{\partial t}, \quad \Gamma = \frac{1}{(1 - \nu^2)} \sqrt{\pi \varphi h}, \quad (2.32) \]

where \(\varphi \) is the viscosity of the vessel wall.

2.2 Characteristic System

We are able to reduce the 1-D governing equations to a family of ordinary differential equations (ODE) using the method of characteristics. This method is only applicable when we consider the tube law for a purely elastic material, as described in Section 2.1.4.1. Once this method is applied we can derive the solution of the partial differential equation (PDE) by integrating along the ODE, if we have initial data prescribed on the boundary.

With the tube law Eq. (2.31) the pressure gradient term in the momentum
Eq. (2.17) takes the form

\[
\frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{1}{\rho} \left(\frac{\partial p}{\partial A} \frac{\partial A}{\partial x} + \frac{\partial p}{\partial \beta} \frac{d\beta}{dx} + \frac{\partial p}{\partial A_0} \frac{dA_0}{dx} \right).
\]

Equations (2.4) and (2.17) can be written in a quasi-linear matrix form as

\[
\frac{\partial U}{\partial t} + H \frac{\partial U}{\partial x} + C = 0,
\]

where

\[
U = \begin{bmatrix} A \\ U \end{bmatrix}, \quad H = \begin{bmatrix} U & A \\ 1/\rho \frac{\partial p}{\partial A} & U \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ -\frac{1}{\rho} \left(f_A - \frac{\partial p}{\partial \beta} \frac{d\beta}{dx} - \frac{\partial p}{\partial A_0} \frac{dA_0}{dx} \right) \end{bmatrix}.
\]

Matrix \(H \) has two real, distinct eigenvalues,

\[
\lambda_{f,b} = u \pm c,
\]

where

\[
c = \sqrt{A \frac{\partial p}{\partial A}}.
\]

where \(c \) is the pulse wave speed of the system. For the purely elastic tube law given by Eq. (2.31), Eq. (2.36) provides the following relationship between the pulse wave speed and the elastic property of the vessel \(\beta \),

\[
c = \sqrt{\frac{\beta}{2\rho A_0} A^{1/4}}.
\]

At the reference area, \(A_0 \), we obtain the reference pulse wave velocity, \(c_0 \), given by

\[
c_0 = \sqrt{\frac{\beta \sqrt{A_0}}{2\rho}} = \sqrt{\frac{hE}{2\rho R_0(1 - \nu^2)}}.
\]
If $c \neq 0$ then the PDE is strictly hyperbolic and the associated eigenvectors span \mathbb{R}. Under physiological flow c, is always greater than u. Therefore we know that $\lambda_f > 0$ and $\lambda_b < 0$.

Additionally the matrix H is diagonalisable since there exists an invertible matrix L such that

$$H = L^{-1} \Lambda L,$$

where $L = \zeta \begin{bmatrix} \frac{c}{\lambda} & 1 \\ -\frac{c}{\lambda} & 1 \end{bmatrix}$, $\Lambda = \zeta \begin{bmatrix} \lambda_f & 0 \\ 0 & \lambda_b \end{bmatrix}$, and ζ is a scaling factor [Alastruey, 2006]. By substituting the diagonalised matrix Eq. (2.39) into Eq. (2.34),

$$L \frac{\partial U}{\partial t} + \Lambda L \frac{\partial U}{\partial x} + LC = 0$$

(2.40)

With the change of variable

$$\frac{\partial W}{\partial U} = L,$$

(2.41)

where $W = [W_f, W_b]^{T}$ is the vector of characteristic variables, Eq. (2.40) reduces to

$$\frac{\partial W}{\partial t} + \Lambda \frac{\partial W}{\partial x} + LC = 0$$

(2.42)

We define \hat{x} as a parametric function in the (x, t) space, hence W along the path $\hat{x}(t)$ is

$$\frac{dW(\hat{x}(t), t)}{dt} = \frac{\partial W}{\partial t} + \frac{d\hat{x}}{dt} \frac{\partial W}{\partial \hat{x}}.$$

(2.43)

Thus, if we take $\frac{d\hat{x}}{dt} I = \Lambda$, then

$$\frac{dW}{dt} = -LC$$

(2.44)
along \(\hat{x}(t) \). We note that if \(f = 0 \) and \(\beta \) and \(A_0 \) are constant along \(x \) then \(C = 0 \), which enables us to solve Eq. (2.42) component wise:

\[
\frac{\partial W_f}{\partial t} + \lambda_f \frac{\partial W_f}{\partial x} = 0 \quad (2.45a)
\]
\[
\frac{\partial W_b}{\partial t} + \lambda_b \frac{\partial W_b}{\partial x} = 0 \quad (2.45b)
\]

Integrating provides an expression for \(W_f \) and \(W_b \)

\[
W_{f,b} = U - U_0 \pm \int_{A_0}^{A} \left(\frac{c}{A} \right) dA, \quad (2.46)
\]

where \(U_0 \) and \(A_0 \) are reference values.

To satisfy the Cauchy-Riemann condition \(\frac{\partial^2 W_{f,b}}{\partial A dU} = \frac{\partial^2 W_{f,b}}{\partial U dA} \), the value of \(\zeta \) in Eq. (2.39) must be constant. This thesis takes \(\zeta = 1 \). Characteristic variables are invariant (constant) along the characteristic curves, which are defined as \((t, Y_f(t))\) and \((t, Y_b(t))\) where,

\[
\frac{dY_f}{dt} = \lambda_f, \quad (2.47)
\]
\[
\frac{dY_b}{dt} = \lambda_b. \quad (2.48)
\]

2.3 Linearised 1-D Equations

Since the 1-D blood flow equations are only weakly nonlinear, it is possible to capture many characteristics of blood flow with the linearised system [Sherwin et al., 2003a]. If we consider the viscoelastic tube law model and the mass and momentum equations (Eqs. (2.4), (2.14) and (2.32)) and linearise about the dia-
tolic conditions \((A, P, P_e, Q) = (A_d, 0, 0, 0)\), with \(\beta, A_d\) and \(\Gamma\) constant along \(x\), yields [Alastruey et al., 2012b]

\[
\begin{align*}
C_{1-D} \frac{\partial p_e}{\partial t} + \frac{\partial q}{\partial x} &= 0, \\
L_{1-D} \frac{\partial q}{\partial t} + \frac{\partial p_e}{\partial x} - \gamma \frac{\partial^2 q}{\partial x^2} &= -R_{1-D} q, \\
p &= p_e - \gamma \frac{\partial q}{\partial x}, \quad p_e = \frac{a}{C_{1-D}}, \quad \gamma = \frac{\Gamma}{A_0^{3/2}},
\end{align*}
\]

where \(a, p, p_e\) and \(q\) are the perturbation variables for area, pressure, the elastic component of pressure, and flow rate, respectively. Additionally, per unit length of vessel,

\[
C_{1-D} = \frac{2A_0^{3/2}}{\beta}, \quad L_{1-D} = \frac{\rho}{A_0}, \quad R_{1-D} = \frac{22\pi \mu}{A_0^2} \tag{2.49}
\]

are the wall compliance, flow inertia, and resistance to blood flow due to blood viscosity, respectively.

2.4 Lumped Parameter Models

In this section we will describe the two lumped parameter (0-D) models used in this thesis: the classical two-element Windkessel (Section 2.4.1) and the three-element Windkessel (Section 2.4.2).

2.4.1 Two-Element Windkessel Model

Windkessel theory was first developed by Stephen Hales in 1733, then later advanced by Otto Frank in 1899 [Frank, 1899; Shi et al., 2011] to explain how the pulsatile motion of blood from the heart is transformed to a continuous steady
flow at the peripheral blood vessels.

Figure 2.3: The two-element Windkessel model sketched in hydraulic form, with compliance, C, and resistance to blood flow, R.

We consider a Windkessel chamber filled at the inlet by a pulsatile flow of blood, Q_{in}, and with an outflow, Q_{out}, and resistance to flow, R at the outlet, as shown in Fig. 2.3. The compliance, C, of the elastic Windkessel chamber with blood volume, $V(t)$, and blood pressure, $P(t)$, is defined as

$$C = \frac{dV}{dP}. \tag{2.50}$$

The rate of change of volume is

$$\frac{dV}{dt} = \left(\frac{dV}{dP}\right) \frac{dP}{dt} = C \frac{dP}{dt}. \tag{2.51}$$

If we have a perfect system with no fluid losses, we can say that the rate of storage must be equal to the difference in inflow and outflow. Thus,

$$Q_{\text{in}}(t) - \frac{P - P_v}{R} = C \frac{dP}{dt}, \tag{2.52}$$

where P_v and R are the pressure and resistance of the peripheral vasculature,
respectively. Equation (2.52) has a solution of the form

\[
P - P_v = (P_0 - P_v) e^{-\frac{t}{RC}} + \frac{1}{C} e^{-\frac{t}{RC}} \int_0^t Q_{in}(t') e^{\frac{t'}{RC}} dt',
\]

where \(P_0 = P(t = 0) \).

During diastole when \(Q_{in} = 0 \),

\[
P - P_v = (P_0 - P_v) e^{-\frac{t}{RC}}.
\]

Hence, during diastole when there is no inflow we see an exponential drop off in the pressure waveform. It is noted that the two-element Windkessel at high frequency pressure perturbations has an unrealistic flow response. Additionally, the model is not applicable to the arterial system as a whole since pressure waves are of different shapes and amplitude at different sites [McDonald, 1974].

2.4.2 Three-element Windkessel Model

The three-element Windkessel model (seen in Fig. 2.4) adds a resistive element to the two-element Windkessel model described in Section 2.4.1. The additional resistive term between the pump and the air chamber simulates resistance to blood flow to minimise oscillations in the blood pressure. The resultant 0-D equations are

\[
\left(1 + \frac{R_1}{R_2}\right) Q(t) + CR_1 \frac{dQ}{dt} = \frac{P(t) - P_v}{R_2} + C \frac{dP(t)}{dt},
\]

where the resistance \(R_1 \) is given by the characteristic impedance \(Z_0 = \frac{\rho c}{A_0} \) in order to minimise wave reflections, the compliance \(C \) represents the change in vessel volume for a given pressure change, and \(R_2 \) represents the peripheral resistance.
Figure 2.4: Representation of the electric circuit analogous to the three-element RCR Windkessel model.

The three-element Windkessel model is governed by a set of simultaneous ordinary differential equations. It will be used within this thesis as a boundary condition to our 1-D model to simulate blood flow in the peripheral vasculature.

2.5 1-D/0-D Model of Blood Flow in the Arterial Network

The arterial network has a tree like structure, with the heart at the root pumping blood into the system. At the periphery (leaves), we have the vascular bed, which can be simulated as a fractal-like asymmetric network of small arteries and arterioles [Taylor, 1966]. In order to simulate the arterial system, it is necessary to join the 1-D model arterial segments together to create a network. This is achieved by enforcing physical conditions at each boundary and junction, taking into account the forward- and backward-travelling characteristic wavefronts derived in Section 2.2.
In this section, first a description of how two or three segments of vessels are joined is given in Section 2.5.1. To this arterial model it is necessary to prescribe boundary conditions; both at the inlet and outlet of the model to simulate the heart and the peripheral vascular beds, respectively. Inlet and outlet boundary conditions are described in Section 2.5.2.

2.5.1 Vessel Junctions

At a bifurcation of a parent vessel into two daughter vessels it is necessary to resolve the characteristic variables at the given boundary (as shown in Fig. 2.5). We consider \((A_1, P_1, U_1)\), \((A_2, P_2, U_2)\) and \((A_3, P_3, U_3)\) as the initial states of vessels 1 (parent), 2 and 3 (daughters), respectively at \(t = t_n\). If we assume inviscid flow the system can be described in terms of forward and backward characteristic variables as

\[
W_f(A_1^u, U_1^u) = W_f(A_1, U_1),
\]

\[
W_b(A_2^u, U_2^u) = W_b(A_2, U_2),
\]

\[
W_b(A_3^u, U_3^u) = W_b(A_3, U_3),
\]

where \(W_f\) and \(W_b\) were defined in Section 2.2. Applying conservation of mass to the upwinded area and flow velocity variables (denoted by the superscript \(u\)), we have

\[
A_1^u U_1^u = A_2^u U_2^u + A_3^u U_3^u.
\]

Finally, applying Bernoulli’s law \(i.e.\) continuity of the sum of static and dynamic
pressures) we get [Alastruey et al., 2012a]

\[P(A_1^u) + \frac{1}{2} \rho(U_1^u)^2 = P(A_2^u) + \frac{1}{2} \rho(U_2^u)^2, \quad (2.60) \]

\[P(A_1^u) + \frac{1}{2} \rho(U_1^u)^2 = P(A_3^u) + \frac{1}{2} \rho(U_3^u)^2. \quad (2.61) \]

The resulting nonlinear system of 6 equations (Eqs. (2.56) to (2.61)) are resolved using the Newton-Raphson method [Alastruey, 2006]. From this, the upwind flux at the junction is determined. Within this work the branching angle is neglected since experimental studies have suggested that the effect of the branch angle on the reflections at junctions is small [Westerhof et al., 1969]. Trifurcations and merging flow are treated in a similar manner. I direct the reader to the work of Alastruey [2006] for a more thorough overview.
2.5.2 Inlet/Outlet Boundary Conditions

At the inlet and outlets of the arterial network it is necessary to enforce boundary conditions. It is assumed that the prescribed inlet to our model is located at the heart. It is possible to model the outflow from the heart using a lumped parameter model of the left ventricle [Mynard & Nithiarasu, 2008], the aortic valve [Matthys et al., 2007; Sherwin et al., 2003a], or the entire heart [Formaggia et al., 2006; Reymond et al., 2009].

\[
(A_L^L, U_L^L) \rightarrow (A_R^U, U_R^U) \\
W_f \rightarrow W_b
\]

Figure 2.6: Layout of the Riemann problem at the inlet boundary to calculate the upwinded states. \((A_L^L, U_L^L)\) represents the current variables in the dummy left hand region. \((A_R^U, U_R^U)\) represents the initial state in the vessel region. \((A_L^u, U_L^u)\) and \((A_R^u, U_R^u)\) are the Riemann upwind variables. \(W_f\) and \(W_b\) are the forward and backward characteristic variables given by Eq. (2.46).

Within this work, a flow waveform \((Q_{bc} = A^u U^u)\) is prescribed at the inlet of the ascending aorta. This type of inflow boundary condition has been widely used in the literature [Alastruey, 2006; Willemet et al., 2015]. We consider the layout in Fig. 2.6 and assume the right side of the interface to be the 1-D model segment of the ascending aorta, and the left hand side to be the virtual inlet region. We further assume that \(A_L = A_R\) and from the characteristic analysis in Section 2.2
we also have

\[W_f(A_L, U_L) = W_f(A_u^L, U_u^L), \quad (2.62) \]

and

\[W_b(A_R, U_R) = W_b(A_u^R, U_u^R). \quad (2.63) \]

A \(W_f(A_u^L, U_u^L) \) is prescribed at each time step so that when combined with \(W_b(A_u^R, U_u^R) \) leads to the desired flow boundary condition, \(Q_{bc} = A^u U^u \).

At the outlet of our 1-D model we represent the downstream vasculature with a 0-D lumped parameter model. It is possible to model the peripheral vasculature bed using structured-tree outflow models [Olufsen, 1999], pure resistor conditions [Anliker et al., 1971; Stettler et al., 1981], or prescribe a pressure or flow rate [Brook & Pedley, 2002; Li & Cheng, 1993; Parker & Jones, 1990; Qureshi et al., 2014; Wan et al., 2002]. In this work we use the three-element Windkessel model described in Section 2.4.2. The three-element Windkessel model has been found to be a good fit to experimental data for the peripheral vasculature [Westerhof et al., 2009]. This Windkessel model is coupled to each 1-D terminal segment by solving a first-order time discretisation of the conservation of mass in the capacitance [Alastruey, 2006].

2.6 Numerical Solution of the 1-D Equations

It is possible to solve the 1-D blood flow equations derived in Sections 2.1.2 to 2.1.4 using different numerical schemes. These include schemes based on the method of characteristics [Acosta et al., 2015; Anliker et al., 1971; Schaaf & Abbrecht., 1972; Wang & Parker, 2004], finite volumes [Montecinos et al., 2014; Müller & Toro,
finite differences [Azer & Peskin, 2007; Huo & Kassab, 2007; Liang et al., 2009; Olufsen, 1999], and finite element methods [Blanco et al., 2014; Formaggia et al., 2003; Huberts et al., 2012a; Mynard & Nithiarasu, 2008; Sherwin et al., 2003a; Willemet et al., 2013; Xiao et al., 2013]. A comparison of these methods has shown a good agreement in their ability to capture the main features of pressure, flow and area waveforms in large arteries [Boileau et al., 2015]. Within this work we use a finite element discontinuous Galerkin scheme with a spectral/hp spatial discretisation. To advance in time we use an explicit second-order Adams-Bashforth scheme. This method is appropriate to the equations derived in Sections 2.1.2 to 2.1.4 because it can propagate waves of varying frequencies without the drawback of excessive dispersion and diffusion errors [Karniadakis & Sherwin, 2013].

2.7 Concluding Remarks

This Chapter has detailed the mathematical formulation used within this Thesis to simulate blood flow in the arterial system. In Chapter 3 a local sensitivity analysis will be applied to a 1-D/0-D model of the full arterial network, focusing on the effect of cardiovascular properties on the computed DVP wave at the finger. Chapter 4 will use the 1-D formulation to investigate whether the shape of the PPG waveform measured in the finger could be used to distinguish among subjects with hypertension and diabetes. In Chapter 5, a novel methodology is described to optimise the number of arterial segments for 1-D/0-D modelling.
Chapter 3

A 1-D Model of Systemic Arterial Blood Flow: Validation and Sensitivity Analysis

Mathematical and numerical models are useful in expanding our understanding of cardiovascular function. As we discussed in Chapter 2, one-dimensional (1-D) blood flow models are well adapted at capturing arterial pulse wave propagation in the systemic vasculature.

In recent years, coupled 1-D/0-D models of the full arterial network [Blanco & Feijóo, 2013; Karamanoglu et al., 1994; Olufsen et al., 2000; Reymond et al., 2009] and truncated network [Bode et al., 2012; Huberts et al., 2012a; Karamanoglu et al., 1993; Leguy et al., 2010; Watanabe et al., 2013] have been developed. As well as considering healthy states, models under pathological conditions have also been developed, e.g. coronary disease [Blanco & Watanabe, 2015; Steele et al., 2003; Willemet et al., 2013] and hypertension [Reymond et al., 2012]. The agreement
of these arterial models have been compared against \textit{in vitro} [Alastruey \textit{et al.}, 2005; Bessems \textit{et al.}, 2008; Matthys \textit{et al.}, 2007] and \textit{in vivo} [Reymond \textit{et al.}, 2011; Willemet \textit{et al.}, 2013] measurements. These studies have shown that 1-D/0-D models offer good accuracy with considerably less computational cost than equivalent 3-D models [Mynard & Nithiarasu, 2008; Xiao \textit{et al.}, 2013].

The first aim of this chapter is to produce a 120-vessel, nonlinear, visco-elastic 1-D/0-D model of pulse wave propagation in the larger arteries of the systemic circulation. The model will include the arteries of the head and hand, where the PPG pulse wave can be measured \textit{in vivo}. This is the baseline model that will form the basis of the research carried out in Chapters 3 to 5 of this thesis. This baseline model will be qualitatively validated by comparing the shape of predicted blood pressure, flow and PPG waves at several arterial sites with that of corresponding \textit{in vivo} waves from the literature. Computed luminal area waveforms at the digital artery in the finger will be compared against \textit{in vivo} PPG waveforms under the assumption that the dynamic area waveform is analogous to the PPG wave at this site [Avolio, 2002]. The baseline model is described and qualitatively validated in Section 3.1.

The second aim of this chapter is to perform a local sensitivity analysis of the predicted 1-D model pulse waveforms to the model parameters. A local sensitivity analysis allows us to study the influence of input parameters of the model on pressure, flow and area waveforms when only one input parameter is varied at a time around an initial state [Ellwein \textit{et al.}, 2008; Leguy \textit{et al.}, 2010; Pope \textit{et al.}, 2009; Willemet \textit{et al.}, 2013]. The conclusions derived from a local sensitivity analysis are dependent on the initial state of the model, and do not account for the interactions between input variables. A global sensitivity analysis considers
the effect of each input parameter within the entire input space of parameters [Huberts et al., 2013; Leguy et al., 2011; Xiu & Sherwin, 2007].

Within this chapter we first present a local sensitivity analysis in order to analyse how changes of arterial stiffness, arterial cross-sectional diameter, peripheral resistance, and Windkessel outflow pressure change the shape of the measured PPG signal at the digital artery in the hand within a healthy population. We will vary input parameters of the model across a physiological range of values taken from the literature. This analysis is presented in Section 3.2. We then carry out a local sensitivity analysis of the PPG signal to the shape of the inflow waveform at the ascending aorta (Section 3.3). In the 1-D/0-D model, the inflow waveform at the ascending aorta is prescribed as the inlet boundary condition of the model. It is noted that in the literature the heart can be modelled using a lumped parameter model [Beyar et al., 1987; Blanco & Feijóo, 2013; Blanco et al., 2012a; Formaggia et al., 2006; Guala et al., 2015b; Mynard & Nithiarasu, 2008; Mynard & Smolich, 2015; Reymond et al., 2009; Ursino, 1998]. Within this last section we will look at how changes of the prescribed inflow waveform at the ascending aorta propagate to the digital artery and affect the shape of the DVP signal.

3.1 Baseline 1-D Model of Systemic Arterial Blood Flow

The baseline 1-D model created in this thesis contains 120 arterial segments representing the larger arteries of the systemic circulation, including the vasculatures of the hand and head (Fig. 3.1). The nonlinear 1-D equations of an incompress-
ible fluid in a compliant and impermeable viscoelastic vessel network are solved in each arterial segment. At the inlet to our model (the aortic root) we prescribe the inflow waveform generated by cardiac contraction. At the periphery of each terminal vessel we couple a 3-element Windkessel model to simulate the peripheral vasculature (see Chapter 2).

Reymond et al. [2009] hypothesise that the cerebral circulation is necessary to obtain an accurate pressure and flow prediction at the carotid artery. It is for this reason that we have included the vasculature of the head within this work. The geometry of the hands taken from Epstein et al. [2015] has been added to the baseline model from Reymond et al. [2009]. The model from Reymond et al. [2009] is largely based on the work of Noordergraaf et al. [1963] and Westerhof et al. [1969], where the major systemic arteries were calculated for a subject with a height of 175cm and mass of 75kg. Unlike Reymond et al. [2009], we do not model the coronary tree as its inclusion is not necessitated by the aims of this thesis.

The model includes the circle of Willis, which is a ring like arterial structure within the head that supplies blood to the brain and surrounding structures. Many anatomical variations of the Circle of Willis exist. In this work we assume a complete arterial structure, which based on 150 MR angiograms accounts for 42% of the population [Krabbe-Hartkamp et al., 1998].

Existing 1-D arterial models tend to be of younger patients; e.g. Reymond et al. [2011]- 30 years old, Mynard & Smolich [2015]- 20 to 30 years old, Guala et al. [2015b] 24 years old, Leguy [2010]- average 27 years old, Blanco et al. [2014] <30 years old, Leguy et al. [2010]- 21 to 34 years old. Notably Willemet et al. [2013] created numerical model for patients 72.7 ±11.1 years old (mean ± SD),
Figure 3.1: Schematic representation of the arterial tree. a) Main systemic arterial tree based on Reymond et al. [2009]. b) Detailed cerebral arterial tree also taken from Reymond et al. [2009]. c) Detail of the hand vasculature taken from Epstein et al. [2015].
and Caroli et al. [2013] simulated patients with a mean age 62 ± 16 years.

Several studies have investigated the role of ageing in numerical modelling. Previously Karamanoglu et al. [1995] aged their numerical model by adjusting the vascular stiffness, but maintaining all other parameters. Guala et al. [2015a] aged their numerical model by increasing the diameter, thickness and length of the aorta, the stiffness of the carotid, maximum elastance function of the heart, and the time of systole. The work of Liang et al. [2009] looked at ageing a closed-loop arterial model from 25 years to 85 years. In their study they increased the aortic stiffness, aortic radius, peripheral artery stiffness, peripheral resistance, and the left ventricular active elastance. Willemet et al. [2015] have created a fictive population that covers physiological features of patients aged < 30 to 70 years old by varying the elastic and muscular artery stiffness, elastic and muscular diameter, heart rate, stroke volume and peripheral resistance.

The 1-D systemic arterial network presented here (Fig. 3.1) is based on the studies cited above and incorporates several adjustments to match haemodynamic data from the literature, as described in the list below. We have adjusted the geometric and material properties of our model to better fit a middle aged patient (40-60 years). Where applicable we have included the mean age of the patients used within each reference study. To simplify the problem, arterial segments were divided into two subsets: ‘elastic vessels’ (vessels 1, 2, 5, 12, 13, 14, 15, 16, 17 18, 27, 28, 35, 37, 39, 41, 42 and 43 in Fig. 3.1) and ‘muscular vessels’ (all remaining segments). The following parameters were adjusted.

- **Aortic (elastic) diameter** scaled by 1.2042 to match the measured cross-sectional area at diastole based on data from Eren et al. [2004] (mean age
50 years).

- **Carotid diameter** scaled by 0.85 to ensure positive flow throughout the cardiac cycle [Mynard & Smolich, 2015].

- **Muscular diameter** scaled by 1.21 so that the pulse pressure better matched the data from Bella *et al.* [2001]; Lacy *et al.* [2004b]; Mitchell *et al.* [2003]; Tedesco *et al.* [2004] (i.e. 5333-7466 Pa) (mean ages 58, 54.5, 60, and 55 years).

- **Arterial stiffness.** In order to satisfy both the pulse pressure and carotid-femoral pulse wave velocity (PWV) taken from the literature it was necessary to iteratively change the global stiffness and the aortic stiffness concurrently. The aortic stiffness was scaled by 1.7, and the stiffness everywhere else by 0.94. Pulse pressure ranges from 5333-7466 Pa at baseline conditions [Bella *et al.*, 2001; Lacy *et al.*, 2004b; Mitchell *et al.*, 2003; Tedesco *et al.*, 2004] and carotid-femoral PWV between 7.7-9.4 m s\(^{-1}\) [Lacy *et al.*, 2004b; Mitchell *et al.*, 2003; Tedesco *et al.*, 2004].

- **Peripheral resistance** scaled by 0.655 so that the mean pressure corresponded to the measured mean pressure by Mitchell *et al.* [2003]; Tedesco *et al.* [2004] (i.e. 12.1-12.5 kPa).

- **Inflow** scaled by 0.9519 so that the mean flow rate matched the mean flow rate for a similar aged person of 106.76 ml s\(^{-1}\) as found in de Simone *et al.* [1997] (age 33 years).

- **Outlet Windkessel** taken to be equal to the capillary pressure of 2.3 kPa measured in Fegan *et al.* [2003] (mean age 61 years).
The work of Bessems et al. [2008] has shown that wall viscoelasticity is necessary to model the attenuation of pressure and flow waves. Including a viscous term to the tube law enhances peripheral pressure and flow wave damping [Segers et al., 1997]. Limited data are available on the viscoelastic properties of the artery. Here, for the largest 55 arteries of our arterial model the viscous modulus (Γ) is taken from Alastruey et al. [2012b]. For the remaining arterial segments in our model the wall viscous modulus values (Γ) are extrapolated from the existing data from arteries of similar sized radii. The nonlinear Voigt-type viscoelastic constitutive law for the arterial wall (see Section 2.1.4.2) is utilised to avoid high-frequency oscillations as obtained by a purely elastic tube law [Matthys et al., 2007].

The 1-D model network was discretised into finite elements of 2 cm. Elements shorter than 2 cm were merged to the previous elements. A polynomial and quadrature order of 2 were applied everywhere apart from vessels 1, 95, 2, 14, 18, 27, 28, 35, 37, 39, 41, 42 and 43 (see Fig. 3.1), where an order of 3 was used to minimise numerical oscillations. Vessels 80 and 82 (left and right ophthalmic arteries) were a source of non-physical oscillations during elastic and visco-elastic simulations, this problem is sometimes seen when solving Taylor-Galerkin numerical schemes with a large discontinuity between two boundary edges [Formaggia et al., 2003]. We were able to solve this problem by decreasing the time step of the solver, by increasing the length of the ophthalmic vessels to 2cm, and by increasing their cross-sectional area to 1.5mm and 1.3mm at the inlet and outlet of these vessels, respectively. A 2cm element size allows us to use quadrature rules and polynomial functions of order 3 combined with a time step of 0.1ms. To maintain the same time step for shorter elements, a quadrature and polynomial order of 2 were often required.
All model parameters are presented in Tables 3.1 to 3.4. The prescribed inflow waveform is shown in Fig. 3.2 A.

3.1.1 Qualitative Model Validation

Pressure and flow measurements in the main arterial segments (ascending aortic arch, left common carotid, right radial, left brachial, thoracic aorta, abdominal aorta, left external iliac artery) and PPG waveforms in the left digital artery are shown in Fig. 3.2. Figure 3.2 also includes typical pressure and flow waveforms taken from the literature.

Comparison of our simulated pressure and flow waveforms with published recorded data shows a good overall agreement in shape and amplitude at the compared sites. The model is able to well reproduce the main features of physiological pressure and flow waveforms in the large systemic arteries, and the PPG waveform at the digital artery in healthy patients. The model captures the following features seen from central to peripheral pressure waveforms found in clinical measurements by Kroeker & Wood [1955]: i, a gradual increase in pulse pressure and the systolic peak towards the periphery, ii, a systolic shoulder present in the aortic pressure waveform (A) but barely visible in the femoral waveform (G), and iii a dicrotic notch which is drawn out and deep in the brachial (D)/radial (C) waves, and is not visible in the femoral wave (G). There is a good agreement between the measured and predicted carotid (B) flow and pressure waveforms, with a similar notch in early diastole. At the radial (C) and brachial (D) sites, the period of backwards flow during early systole is slightly larger than in in vivo measurements. Flow waveforms at the thoracic (E) and abdominal aorta (F) well replicate in vivo data.
At the iliac artery the model is able to capture a period of backflow during early diastole, a known feature at this site [Reymond, 2011].

This study aimed to improve on the existing model used by Reymond et al. [2009] to include the vasculature of the hands and an alternative viscoelastic tube law. The inclusion of the hands to our 1-D numerical model will allow us to analyse the PPG signal at the digital artery, a common measurement site in clinical studies. It is necessary to include the cerebral circulation to well simulate the pressure and flow waveforms at the common and internal carotid artery [Blanco & Watanabe, 2015; Reymond, 2011].

There is a weak agreement in the shape of measured and predicted temporal flow waveforms. An unphysiological notch is present in early diastole which is not present to such a degree in the literature waveforms. This oscillation may be due to the viscosity parameter of the cerebral circulation being extrapolated from other similar sized vessels, which may not be an adequate assumption in this case. Due to the poor agreement of this waveform, we will not utilise the temporal artery to study PPG waveforms.

We further improved the model by altering the input parameters so the output parameters matched haemodynamic values from the literature for a given normotensive population of patients of age 50-60 years. Our model was then compared against literature waveforms of pressure and flow and PPG at the digital artery in healthy volunteers from the literature. We conclude that the 1-D/0-D model created in this section well reproduces the wave characteristics at the measured locations shown in Fig. 3.2, except for the PPG wave at the temporal artery.
3. Results

3.1. Waveform characterization

Eight contiguous cardiac cycles, normalized to the R-R interval, were analyzed from the individual waveforms. Feature points corresponding to well-defined waveform features were extracted from the waveforms. The inclinations of approximately linear segments of the primary wave were measured.

4. Discussion

The results were supportive of the capacity of the 1-D model to capture the in vivo waveforms measured at approximately the same locations as the corresponding numerical waveforms. In vivo waveforms were taken from Reymond et al. Reymond et al. [2009] for the aortic arch (flow), thoracic aorta, abdominal aorta, femoral (flow) and external iliac arteries; Holdsworth & Norley [1999] for the common carotid artery; Oseli et al. [2003] for the radial artery; Oates [2001] for the brachial artery; Millasseau et al. [2000] for the digital pressure; Mynard & Smolich [2015] for the aortic arch (pressure), the right femoral (pressure), and the right temporal (pressure); and Dawber et al. [1973] for the PPG signal (Class I).
Arterial
segment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Vessel
Name

Ascending Aorta 1
Aortic arch A
Brachiocepha
Subclavian A.R
Common Carotid R
Vertebral R
Subclavian R
Radial R
Ulnar A R
Interosseous R
Ulnar B R
I. Carotid R
Ex Carotid 1 R
Aortic arch B
Common Carotid L
I. Carotid L
Ex Carotid 1 L
Thorac. aor. A
Subclavian A.L
Vertebral L
Subclavian L
Radial L
Ulnar A L
Interosseous L
Ulnar B L
Intercostal
Thorac aorta B
Abdominal Aor. A
Celiac A
Celiac B
Hepatic
Gastric
Splenic
Superior Mes

4
2
3.4
3.4
9.4
14.9
42.2
23.5
6.7
7.9
17.1
17.8
4.1
3.9
13.9
17.8
4.1
5.2
3.4
14.8
42.2
23.5
6.7
7.9
17.1
8
10.4
5.3
2
2
6.6
7.1
6.3
5.9

Length
(cm)

cin → cout
(m/s)
6.86 → 6.91
7.24 → 7.35
3.66 → 3.85
4.61 → 5.06
5.32 → 6.7
6.91 → 7.59
5.26 → 6.37
6.91 → 7.34
6.91 → 7.11
8.34 → 8.77
7.26 → 7.59
7.18 → 7.89
7.51 → 7.77
7.63 → 7.7
5.55 → 7.06
7.36 → 8.01
7.66 → 7.89
7.8 → 7.95
4.69 → 5.16
6.91 → 7.59
5.26 → 6.37
7.05 → 7.59
6.57 → 6.57
8.77 → 8.77
6.68 → 6.91
4.45 → 4.95
8.31 → 9
9.17 → 9.17
5.33 → 5.57
6.15 → 6.28
6.07 → 6.52
7.26 → 7.42
6.62 → 6.79
5.3 → 5.51

Rin → Rout
(mm)

15.7 → 15.4
13.6 → 13
8.42 → 7.73
5.41 → 4.4
3.9 → 2.16
1.98 → 1.53
4.02 → 2.47
1.98 → 1.68
1.98 → 1.84
1.17 → 1.01
1.73 → 1.53
1.79 → 1.37
1.58 → 1.43
11.7 → 11.4
3.51 → 1.87
1.67 → 1.31
1.49 → 1.37
11 → 10.4
5.21 → 4.19
1.98 → 1.53
4.02 → 2.47
1.89 → 1.53
2.28 → 2.28
1.01 → 1.01
2.18 → 1.98
5.83 → 4.61
9.14 → 7.23
6.85 → 6.85
3.89 → 3.49
2.71 → 2.57
2.8 → 2.33
1.73 → 1.63
2.23 → 2.08
3.93 → 3.58

0.00149 → 0.00152
0.00174 → 0.00182
0.00431 → 0.00484
0.00757 → 0.00967
0.0555 → 0.107
0.141 → 0.187
0.0269 → 0.0463
0.141 → 0.168
0.141 → 0.154
0.249 → 0.29
0.163 → 0.187
0.132 → 0.174
0.15 → 0.167
0.00204 → 0.0021
0.0625 → 0.125
0.141 → 0.183
0.159 → 0.174
0.00219 → 0.00231
0.00791 → 0.0102
0.141 → 0.187
0.0269 → 0.0463
0.149 → 0.187
0.121 → 0.121
0.29 → 0.29
0.127 → 0.141
0.00345 → 0.00458
0.00265 → 0.00339
0.00358 → 0.00358
0.00558 → 0.00631
0.00837 → 0.00888
0.0403 → 0.0495
0.163 → 0.174
0.124 → 0.134
0.011 → 0.0123

Γin → Γout
(MPa s m−2)
Arterial
compliance
(10−10 m3 Pa−1)
6.098
1.984
4.723
1.068
0.806
0.268
4.288
0.470
0.149
0.04
0.249
0.239
0.048
2.635
0.867
0.204
0.042
2.858
0.946
0.266
4.288
0.389
0.241
0.03
0.482
3.03
2.828
0.886
0.275
0.108
0.33
0.11
0.20
0.85

Arterial
resistance
(1010 Pa s m−3)
1.92e-06
1.806e-06
2.25e-05
0.0001691
0.00405
0.04604
0.01273
0.05935
0.01416
0.1606
0.06818
0.08469
0.02246
6.202e-06
0.009951
0.1058
0.02746
1.125e-05
0.0002011
0.04573
0.01273
0.07996
0.006952
0.214
0.0256
0.0003134
6.787e-05
6.73e-05
0.0003043
0.001157
0.004374
0.02479
0.008176
0.0008369

Peripheral
resistance
(1010 Pa s m−3)
5.534 (0.2574)
5.534 (0.2574)
0.09168 (0.005611)
0.2384 (0.03295)
0.3554 (0.07951)
0.1519 (0.04349)
0.06112 (0.01096)

Peripheral
compliance
(10−10 m3 Pa−1)
0.033
0.033
2.003
0.7669
0.5146
1.2
2.993

Parameters of the arterial tree (part I). Rin → Rout : diastolic cross-sectional radii at the inlet and outlet of the arterial segment. cin → cout : wave speed at the inlet
and outlet of the arterial segment. Γin → Γout : wall viscosity parameter at the inlet and outlet of the arterial segment. The characteristic impedance is given in brackets in ‘Peripheral
resistance’.

Table 3.1:


Table 3.2: Parameters of the arterial tree (part II). $R_{in} \rightarrow R_{out}$: diastolic cross-sectional radii at the inlet and outlet of the arterial segment. $c_{in} \rightarrow c_{out}$: wave speed at the inlet and outlet of the arterial segment. $\Gamma_{in} \rightarrow \Gamma_{out}$: wall viscosity parameter at the inlet and outlet of the arterial segment. The characteristic impedance is given in brackets in ‘Peripheral resistance’.

<table>
<thead>
<tr>
<th>Vessel Name</th>
<th>Arterial segment</th>
<th>Length (cm)</th>
<th>$R_{in} \rightarrow R_{out}$ (mm)</th>
<th>$c_{in} \rightarrow c_{out}$ (m/s)</th>
<th>$\Gamma_{in} \rightarrow \Gamma_{out}$ (MPa s m$^{-3}$)</th>
<th>Arterial compliance (10^{-10} Pa$^{-1}$)</th>
<th>Arterial resistance (10^{10} Pa s m$^{-3}$)</th>
<th>Peripheral compliance (10^{-10} Pa$^{-1}$)</th>
<th>Peripheral resistance (10^{10} Pa s m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abd. Aorta</td>
<td>Renal L</td>
<td>35</td>
<td>6.48 → 6.37, 9.34 → 9.39</td>
<td>0.038 → 0.038</td>
<td>0.281</td>
<td>3.294e+05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abd. Aorta C</td>
<td>Renal R</td>
<td>36</td>
<td>6.64 → 6.64, 9.26 → 9.26</td>
<td>0.0371 → 0.0371</td>
<td>0.307</td>
<td>2.885e+05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abd. Aorta D</td>
<td>Inf Mesen</td>
<td>37</td>
<td>6.53 → 6.21, 9.32 → 9.48</td>
<td>0.0377 → 0.0398</td>
<td>1.458</td>
<td>0.000189</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abd. Aorta C</td>
<td>Abd. aorta</td>
<td>38</td>
<td>6.1 → 5.88, 9.53 → 9.65</td>
<td>0.0405 → 0.0492</td>
<td>0.234</td>
<td>4.358e+05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Common Ili A</td>
<td>Common Ili L</td>
<td>40</td>
<td>4.01 → 4.01, 10.5 → 10.9</td>
<td>0.0111 → 0.0125</td>
<td>0.279</td>
<td>0.0005066</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Externa Ili A</td>
<td>Externa Ili L</td>
<td>41</td>
<td>3.26 → 3.13, 5.72 → 5.82</td>
<td>0.034 → 0.0357</td>
<td>1.323</td>
<td>0.003869</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inner Ili A</td>
<td>Femoral R</td>
<td>42</td>
<td>2.13 → 2.13, 6.73 → 6.73</td>
<td>0.131 → 0.131</td>
<td>0.15</td>
<td>0.006767</td>
<td>0.5212 (0.04103)</td>
<td>0.5308</td>
<td></td>
</tr>
<tr>
<td>Femoral R</td>
<td>Deep Femoral R</td>
<td>43</td>
<td>2.71 → 2.03, 6.15 → 6.85</td>
<td>0.1 → 0.137</td>
<td>1.815</td>
<td>0.04176</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post tibial R</td>
<td>Post tibial R</td>
<td>44</td>
<td>3.68 → 3.53, 7.34 → 7.59</td>
<td>0.168 → 0.187</td>
<td>0.45</td>
<td>0.3135</td>
<td>0.3135 (0.09318)</td>
<td>0.5836</td>
<td></td>
</tr>
<tr>
<td>Ante tibial R</td>
<td>Ante tibial R</td>
<td>45</td>
<td>3.26 → 3.13, 5.72 → 5.82</td>
<td>0.034 → 0.0357</td>
<td>1.323</td>
<td>0.003869</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Externa Ili A</td>
<td>Externa Ili L</td>
<td>46</td>
<td>2.13 → 2.13, 6.73 → 6.73</td>
<td>0.131 → 0.131</td>
<td>0.15</td>
<td>0.006767</td>
<td>0.5212 (0.04103)</td>
<td>0.5308</td>
<td></td>
</tr>
<tr>
<td>Femoral L</td>
<td>Deep Femoral L</td>
<td>47</td>
<td>2.13 → 1.98, 6.73 → 6.91</td>
<td>0.131 → 0.141</td>
<td>0.34</td>
<td>0.01972</td>
<td>0.3135 (0.09408)</td>
<td>0.5836</td>
<td></td>
</tr>
<tr>
<td>Post tibial R</td>
<td>Post tibial L</td>
<td>48</td>
<td>3.14 → 3.13, 7.31 → 7.54</td>
<td>0.168 → 0.187</td>
<td>0.45</td>
<td>0.3135</td>
<td>0.3135 (0.09318)</td>
<td>0.5836</td>
<td></td>
</tr>
<tr>
<td>Ante tibial R</td>
<td>Ante tibial L</td>
<td>49</td>
<td>3.13 → 3.13, 5.72 → 5.82</td>
<td>0.034 → 0.0357</td>
<td>1.323</td>
<td>0.003869</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basilar arte</td>
<td>Basilar arte I</td>
<td>50</td>
<td>2.13 → 0.194, 6.73 → 6.98</td>
<td>0.131 → 0.114</td>
<td>0.053</td>
<td>0.003287</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Super Cere R</td>
<td>Super Cere R</td>
<td>51</td>
<td>0.955 → 0.793, 8.93 → 9.51</td>
<td>0.307 → 0.373</td>
<td>0.00</td>
<td>0.04881</td>
<td>1.753 (0.4589)</td>
<td>0.0027</td>
<td></td>
</tr>
<tr>
<td>Super Cere L</td>
<td>Super Cere L</td>
<td>52</td>
<td>0.955 → 0.793, 8.93 → 9.51</td>
<td>0.307 → 0.373</td>
<td>0.00</td>
<td>0.04881</td>
<td>1.753 (0.4589)</td>
<td>0.0027</td>
<td></td>
</tr>
<tr>
<td>Basilar arte I</td>
<td>Basilar arte I</td>
<td>53</td>
<td>0.57 → 0.214, 6.78 → 6.98</td>
<td>0.201 → 0.227</td>
<td>0.30</td>
<td>0.0002253</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post cereb 1 R</td>
<td>Post cereb 1 L</td>
<td>54</td>
<td>1.06 → 0.06, 6.62 → 6.62</td>
<td>0.275 → 0.275</td>
<td>0.001</td>
<td>0.004409</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post cereb 1 L</td>
<td>Post cereb 1 L</td>
<td>55</td>
<td>1.06 → 0.06, 6.62 → 6.62</td>
<td>0.275 → 0.275</td>
<td>0.001</td>
<td>0.004409</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post commun R</td>
<td>Post commun R</td>
<td>56</td>
<td>0.684 → 0.684, 9.99 → 9.99</td>
<td>0.435 → 0.435</td>
<td>0.001</td>
<td>0.05129</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post commun L</td>
<td>Post commun L</td>
<td>57</td>
<td>0.684 → 0.684, 9.99 → 9.99</td>
<td>0.435 → 0.435</td>
<td>0.001</td>
<td>0.05129</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post cereb 2 R</td>
<td>Post cereb 2 R</td>
<td>58</td>
<td>1.11 → 1.01, 8.48 → 8.77</td>
<td>0.261 → 0.29</td>
<td>0.03</td>
<td>0.1311</td>
<td>0.7029 (0.2574)</td>
<td>0.00435</td>
<td></td>
</tr>
<tr>
<td>Post cereb 2 L</td>
<td>Post cereb 2 L</td>
<td>59</td>
<td>1.11 → 1.01, 8.48 → 8.77</td>
<td>0.261 → 0.29</td>
<td>0.03</td>
<td>0.1311</td>
<td>0.7029 (0.2574)</td>
<td>0.00435</td>
<td></td>
</tr>
<tr>
<td>ICA dist R</td>
<td>ICA dist R</td>
<td>60</td>
<td>0.24 → 0.203, 6.79 → 6.85</td>
<td>0.154 → 0.137</td>
<td>0.001</td>
<td>0.0003117</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ICA dist L</td>
<td>ICA dist L</td>
<td>61</td>
<td>0.24 → 0.203, 6.79 → 6.85</td>
<td>0.154 → 0.137</td>
<td>0.001</td>
<td>0.0003117</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3.3: Parameters of the arterial tree (part III). $R_{in} \rightarrow R_{out}$: diastolic cross-sectional radii at the inlet and outlet of the arterial segment. $c_{in} \rightarrow c_{out}$: wave speed at the inlet and outlet of the arterial segment. $\Gamma_{in} \rightarrow \Gamma_{out}$: wall viscosity parameter at the inlet and outlet of the arterial segment. The characteristic impedance is given in brackets in ‘Peripheral resistance’.

<table>
<thead>
<tr>
<th>Vessel Name</th>
<th>Arterial segment</th>
<th>Length (cm)</th>
<th>$R_{in} \rightarrow R_{out}$ (mm)</th>
<th>$c_{in} \rightarrow c_{out}$ (m/s)</th>
<th>$\Gamma_{in} \rightarrow \Gamma_{out}$ (MPa s m$^{-2}$)</th>
<th>Arterial compliance (10$^{-10}$ m3 Pa$^{-1}$)</th>
<th>Arterial resistance (1010 Pa s m$^{-3}$)</th>
<th>Peripheral resistance (1010 Pa s m$^{-3}$)</th>
<th>Peripheral compliance (10$^{-10}$ m3 Pa$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant cerebRL</td>
<td>1.2</td>
<td>1.17 → 1.11</td>
<td>8.34 → 8.48</td>
<td>0.249 → 0.261</td>
<td>0.007</td>
<td>0.01984</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ant cerebRL</td>
<td>1.2</td>
<td>1.17 → 1.11</td>
<td>8.34 → 8.48</td>
<td>0.249 → 0.261</td>
<td>0.007</td>
<td>0.01984</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Middle cervL</td>
<td>0.8</td>
<td>1.63 → 1.53</td>
<td>7.42 → 7.59</td>
<td>0.174 → 0.187</td>
<td>0.011</td>
<td>0.003581</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCA M2 sup R</td>
<td>1.1</td>
<td>5.71 → 0.573</td>
<td>8.48 → 10.6</td>
<td>0.261 → 0.522</td>
<td>0.02</td>
<td>0.5374</td>
<td>6.566 (0.5909)</td>
<td>0.0021</td>
<td>-</td>
</tr>
<tr>
<td>MCA M2 inf R</td>
<td>0.7</td>
<td>5.71 → 0.573</td>
<td>8.48 → 10.6</td>
<td>0.261 → 0.522</td>
<td>0.02</td>
<td>0.5305</td>
<td>6.566 (0.5909)</td>
<td>0.0021</td>
<td>-</td>
</tr>
<tr>
<td>Middle cere2 L</td>
<td>0.8</td>
<td>5.71 → 0.573</td>
<td>8.48 → 10.6</td>
<td>0.261 → 0.522</td>
<td>0.02</td>
<td>0.5374</td>
<td>6.566 (0.5909)</td>
<td>0.0021</td>
<td>-</td>
</tr>
<tr>
<td>MCA M2 sup L</td>
<td>1.1</td>
<td>5.71 → 0.573</td>
<td>8.48 → 10.6</td>
<td>0.261 → 0.522</td>
<td>0.02</td>
<td>0.5305</td>
<td>6.566 (0.5909)</td>
<td>0.0021</td>
<td>-</td>
</tr>
<tr>
<td>MCA M2 inf L</td>
<td>0.7</td>
<td>5.71 → 0.573</td>
<td>8.48 → 10.6</td>
<td>0.261 → 0.522</td>
<td>0.02</td>
<td>0.5374</td>
<td>6.566 (0.5909)</td>
<td>0.0021</td>
<td>-</td>
</tr>
<tr>
<td>Ant cereb A2 R</td>
<td>2.4</td>
<td>1.01 → 0.955</td>
<td>8.77 → 8.93</td>
<td>0.29 → 0.307</td>
<td>0.01</td>
<td>0.0725</td>
<td>7.029 (0.2936)</td>
<td>0.003525</td>
<td>-</td>
</tr>
<tr>
<td>Ant commu</td>
<td>0.2</td>
<td>0.738 → 0.738</td>
<td>9.74 → 9.74</td>
<td>0.402 → 0.402</td>
<td>0.009</td>
<td>0.01884</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ant cereb A2 L</td>
<td>2.4</td>
<td>1.01 → 0.955</td>
<td>8.77 → 8.93</td>
<td>0.29 → 0.307</td>
<td>0.01</td>
<td>0.0725</td>
<td>7.029 (0.2936)</td>
<td>0.003525</td>
<td>-</td>
</tr>
<tr>
<td>Int car sinus R</td>
<td>1.1</td>
<td>2.28 → 2.08</td>
<td>6.57 → 6.79</td>
<td>0.121 → 0.134</td>
<td>0.035</td>
<td>0.001365</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ophthalmic R</td>
<td>0.8</td>
<td>2.847 → 0.738</td>
<td>9.3 → 9.74</td>
<td>0.348 → 0.402</td>
<td>0.00</td>
<td>0.1435</td>
<td>1.753 (0.5442)</td>
<td>0.0003</td>
<td>-</td>
</tr>
<tr>
<td>Int car sinne L</td>
<td>1.1</td>
<td>2.28 → 2.08</td>
<td>6.57 → 6.79</td>
<td>0.121 → 0.134</td>
<td>0.035</td>
<td>0.001365</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ophthalmic L</td>
<td>0.2</td>
<td>0.847 → 0.738</td>
<td>9.3 → 9.74</td>
<td>0.348 → 0.402</td>
<td>0.00</td>
<td>0.1435</td>
<td>1.753 (0.5442)</td>
<td>0.0003</td>
<td>-</td>
</tr>
<tr>
<td>Exter. caro. 2 R</td>
<td>6.1</td>
<td>2.13 → 1.89</td>
<td>6.73 → 7.05</td>
<td>0.131 → 0.149</td>
<td>0.156</td>
<td>0.01061</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sup. thy. R</td>
<td>8.4</td>
<td>1.11 → 0.573</td>
<td>8.48 → 10.6</td>
<td>0.261 → 0.522</td>
<td>0.03</td>
<td>0.7843</td>
<td>1.97 (0.9499)</td>
<td>0.004425</td>
<td>-</td>
</tr>
<tr>
<td>Exter. caro. 2 L</td>
<td>6.1</td>
<td>2.13 → 1.89</td>
<td>6.73 → 7.05</td>
<td>0.131 → 0.149</td>
<td>0.156</td>
<td>0.01061</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sup. thy. L</td>
<td>8.4</td>
<td>1.11 → 0.573</td>
<td>8.48 → 10.6</td>
<td>0.261 → 0.522</td>
<td>0.03</td>
<td>0.7843</td>
<td>1.97 (0.9499)</td>
<td>0.004425</td>
<td>-</td>
</tr>
<tr>
<td>Maxillary L</td>
<td>8.4</td>
<td>1.37 → 1.63</td>
<td>7.26 → 7.42</td>
<td>0.163 → 0.174</td>
<td>0.096</td>
<td>0.0213</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxillary L</td>
<td>8.4</td>
<td>1.37 → 1.63</td>
<td>7.26 → 7.42</td>
<td>0.163 → 0.174</td>
<td>0.096</td>
<td>0.0213</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Superf. R</td>
<td>9.0</td>
<td>1.22 → 0.793</td>
<td>8.22 → 9.51</td>
<td>0.237 → 0.373</td>
<td>0.03</td>
<td>0.5995</td>
<td>1.641 (0.4899)</td>
<td>0.00375</td>
<td>-</td>
</tr>
<tr>
<td>Superf. pari.R</td>
<td>10.0</td>
<td>1.22 → 0.793</td>
<td>8.22 → 9.51</td>
<td>0.237 → 0.373</td>
<td>0.03</td>
<td>0.5995</td>
<td>1.641 (0.4899)</td>
<td>0.00375</td>
<td>-</td>
</tr>
<tr>
<td>Superf. L</td>
<td>9.0</td>
<td>1.22 → 0.793</td>
<td>8.22 → 9.51</td>
<td>0.237 → 0.373</td>
<td>0.03</td>
<td>0.5995</td>
<td>1.641 (0.4899)</td>
<td>0.00375</td>
<td>-</td>
</tr>
<tr>
<td>Superf. pari. L</td>
<td>10.0</td>
<td>1.22 → 0.793</td>
<td>8.22 → 9.51</td>
<td>0.237 → 0.373</td>
<td>0.03</td>
<td>0.5995</td>
<td>1.641 (0.4899)</td>
<td>0.00375</td>
<td>-</td>
</tr>
<tr>
<td>Ascend. aorta 2</td>
<td>5.5</td>
<td>3.5 → 15.4</td>
<td>6.87 → 6.91</td>
<td>0.00149 → 0.00152</td>
<td>5.312</td>
<td>1.691e-06</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ant. choroid R</td>
<td>9.6</td>
<td>3.6 → 0.738</td>
<td>9.3 → 9.74</td>
<td>0.348 → 0.402</td>
<td>0.01</td>
<td>0.2588</td>
<td>1.313 (0.5442)</td>
<td>0.01155</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3.4: Parameters of the arterial tree (part IV).

R_in → R_out: diastolic cross-sectional radii at the inlet and outlet of the arterial segment.

\(c_{in} \rightarrow c_{out} \): wave speed at the inlet and outlet of the arterial segment. \(T_{in} \rightarrow T_{out} \): wall viscosity parameter at the inlet and outlet of the arterial segment. The characteristic impedance is given in brackets in 'Peripheral resistance'.

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Arterial Length (mm)</th>
<th>(R_{in} \rightarrow R_{out}) (mm)</th>
<th>(c_{in} \rightarrow c_{out}) (m/s)</th>
<th>(T_{in} \rightarrow T_{out}) (MPa s m^{-2})</th>
<th>Arterial compliance (10^{-10} m^3 Pa^{-1})</th>
<th>Peripheral compliance (10^{-10} m^3 Pa^{-1})</th>
<th>Peripheral resistance (10^{10} Pa s m^{-3})</th>
<th>Peripheral resistance (10^{10} Pa s m^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA distal R L</td>
<td>97</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>Ant. choroid L</td>
<td>98</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>ICA distal R L</td>
<td>99</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>Dig I L</td>
<td>100</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>Dig II L</td>
<td>101</td>
<td>2.5</td>
<td>1.43 \rightarrow 1.43</td>
<td>7.78</td>
<td>0.198 \rightarrow 0.198</td>
<td>0.03 \rightarrow 0.03</td>
<td>0.00198 \rightarrow 0.00198</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>Dig III L</td>
<td>102</td>
<td>1.5</td>
<td>1.43 \rightarrow 1.43</td>
<td>7.78</td>
<td>0.198 \rightarrow 0.198</td>
<td>0.03 \rightarrow 0.03</td>
<td>0.00198 \rightarrow 0.00198</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>Dig IV L</td>
<td>103</td>
<td>1.5</td>
<td>1.43 \rightarrow 1.43</td>
<td>7.78</td>
<td>0.198 \rightarrow 0.198</td>
<td>0.03 \rightarrow 0.03</td>
<td>0.00198 \rightarrow 0.00198</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>SPA I L</td>
<td>104</td>
<td>1.5</td>
<td>1.43 \rightarrow 1.43</td>
<td>7.78</td>
<td>0.198 \rightarrow 0.198</td>
<td>0.03 \rightarrow 0.03</td>
<td>0.00198 \rightarrow 0.00198</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>SPA II L</td>
<td>105</td>
<td>1.5</td>
<td>1.43 \rightarrow 1.43</td>
<td>7.78</td>
<td>0.198 \rightarrow 0.198</td>
<td>0.03 \rightarrow 0.03</td>
<td>0.00198 \rightarrow 0.00198</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>SPA III L</td>
<td>106</td>
<td>1.5</td>
<td>1.43 \rightarrow 1.43</td>
<td>7.78</td>
<td>0.198 \rightarrow 0.198</td>
<td>0.03 \rightarrow 0.03</td>
<td>0.00198 \rightarrow 0.00198</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>SPA I R</td>
<td>107</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>SPA II R</td>
<td>108</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>SPA III R</td>
<td>109</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>DPA I L</td>
<td>110</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>DPA II L</td>
<td>111</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>DPA III L</td>
<td>112</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>DPA I R</td>
<td>113</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>DPA II R</td>
<td>114</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
<tr>
<td>DPA III R</td>
<td>115</td>
<td>3.6</td>
<td>2.03 \rightarrow 2.03</td>
<td>6.65</td>
<td>0.157 \rightarrow 0.157</td>
<td>0.01 \rightarrow 0.01</td>
<td>0.0000327 \rightarrow 0.0000327</td>
<td>- \rightarrow -</td>
</tr>
</tbody>
</table>

67
3.2 Local Sensitivity Analysis

In order to better understand the 120-artery 1-D model produced in Section 3.1, we will investigate how variations in input parameters alter the pressure, velocity and cross-sectional area waveforms generated by the model. In particular, we will focus on how input parameters alter the shape of the digital pulse wave (DPV) at the digital artery in the hand.

Within this section, we will change the following input parameters: the peripheral Windkessel pressure and resistance, cross-sectional area of the elastic and muscular arteries, and the stiffness of the elastic and muscular arteries. The 6 parameters varied were chosen since they have been used in other sensitivity analysis for a normal healthy population. These parameters can all take a range of values under normal physiological conditions [Willemet et al., 2015]. The work of Epstein et al. [2014]; Leguy et al. [2011]; Willemet et al. [2013] has shown that a change in arterial length and peripheral compliance has a very small change on arterial outputs. Thus, these two parameters will not be included in our sensitivity analysis.

According to the clinical literature, variations in arterial stiffness produce profound changes in the contour of the digital pulse wave (DPV). It has been hypothesised that the distinct two-peaked undulatory form of the DVP is due to pressure waves travelling from the left ventricle to the finger and later smaller reflections from internal mismatching, mainly in the lower body [Chowienczyk et al., 1999]. But how other characteristics of the cardiovascular system interact at the digital artery remains relatively unknown.

Within this section we will first present the methodology of the sensitivity
analysis (Section 3.2.1) and then present the results of the analysis and discuss them in Sections 3.2.2 and 3.2.3, respectively.

3.2.1 Methods

The 120-artery model was used to study the effects on DVP of several physical properties of the system and investigate the role of wave reflections on the shape of the DVP contour. The DVP is simulated as the cross-sectional area waveform at the midlength point of the digital artery (Vessel 101) Fig. 3.1c.

We will first describe the changes in arterial (Section 3.2.1.1) and peripheral (Section 3.2.1.2) properties considered within this analysis. We will then describe the parameters that will be measured at the DVP to assess the effect of changes in these properties (Section 3.2.1.3).

3.2.1.1 Changes in Arterial Properties

We investigated the effects on the shape of the DVP of changes in peripheral resistances, Windkessel outflow pressure, elastic and muscular stiffness, and elastic and muscular cross-sectional diameter of the 120-artery model (Fig. Fig. 3.1 A) described above (hereinafter referred to as the baseline model). We considered the following six types of variations from the baseline model across a range of physiologically possible values.

- Variation VI – Changes in Windkessel outflow pressure: The Windkessel pressure P_{out} was modified in all terminal Windkessel models by the same percentage, from -80% up to +100% of the baseline value): from 466.6 to 4666 Pa. Nine variations from the baseline model were considered. The
range of values chosen extends across measured capillary pressures in humans [McDonald, 1974; Parazynski et al., 1993]. The baseline Windkessel pressure is 2333 Pa.

- **Variation V2 – Changes in peripheral resistance:** The resistance $R_1 + R_2$ was modified in all terminal Windkessel models by the same percentage, from -40% to 200% of the baseline value in order to simulate changes in net peripheral resistance from $5.22 \cdot 10^7$ to $2.61 \cdot 10^8$ Pa s m$^{-3}$. This range is based on the values reported in Jansen et al. [2001]. Twelve variations from the baseline model were considered. The baseline resistance is $8.71 \cdot 10^7$ Pa s m$^{-3}$.

- **Variation V3 – Changes in elastic vessel diameter:** The cross-sectional diameter of the elastic vessels was modified from -40% to 100% of the baseline values. At the aortic root, these percentages produce a range of diameters at diastolic pressures from 18.6 to 58.6 mm. Seven variations from the baseline model were considered. These variations covered the physiological range of cross-sectional areas measured at the aortic root by Roman et al. [1989]. The baseline diameter at the aortic root at diastolic pressure is 31.4 mm.

- **Variation V4 – Changes in muscular vessels diameter:** The cross-sectional diameter of the muscular vessels was modified from -60% to 60% of the baseline model. At the radial artery, this range equated to a diameter change from 1.6 to 5.8 mm, which corresponds to the physiological range of values measured by Yoo et al. [2005]. Eight variations from the baseline model were considered. The baseline diameter at the root of the radial artery at diastolic pressure is 3.8 mm.
• **Variation V5 – Changes in aortic stiffness**: The aortic stiffness was changed by -60% to +180% of the baseline values. A total of 12 variations from baseline values were considered. As a result, the carotid-femoral PWV changed from 5.4 to 9.1 m s$^{-1}$. This variation in carotid-femoral PWV corresponds to a physiologically possible range of values for a patient within the 30-50 year age range [The Reference Values for Arterial Stiffness’ Collaboration, 2010].

• **Variation V6 – Changes in muscular stiffness**: The stiffness of the muscular vessels were changed by -40% to 180% of the baseline values. A total of 11 variations from baseline values were considered. As a result, local radial PWV changed from 5.2 to 13.2 m s$^{-1}$, where the baseline value was 7.1 m s$^{-1}$. The range of values for the radial PWV closely matches the range measured by Fulton & McSwiney [1930].

3.2.1.2 Changes in Peripheral Properties

We investigated the contribution to the baseline area waveform at the digital artery of wave reflections originating at the outlet of terminal branches, which we referred to as peripheral reflections. As described by Alastruey et al. [2009b], peripheral reflections can be eliminated from a terminal branch if the outflow three-element Windkessel model is replaced by a single resistance equal to the characteristic impedance at the outlet of the branch, so that any wave leaving the terminal branch is completely absorbed by the outlet. We applied completely absorbing boundary conditions to parts of the network. We divided the 120-artery network at the iliac bifurcation into two subsets: upper-body segments located above the iliac bifurcation and lower-body segments located below the iliac
bifurcation. We considered 4 combinations of the baseline Windkessel and the new absorbing boundary condition for the upper and lower body parts (Table 3.5)

<table>
<thead>
<tr>
<th>Model</th>
<th>Upper Body</th>
<th>Lower Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Windkessel</td>
<td>Windkessel</td>
</tr>
<tr>
<td>P1</td>
<td>Absorbing</td>
<td>Absorbing</td>
</tr>
<tr>
<td>P2</td>
<td>Windkessel</td>
<td>Absorbing</td>
</tr>
<tr>
<td>P3</td>
<td>Absorbing</td>
<td>Windkessel</td>
</tr>
</tbody>
</table>

Table 3.5: Boundary conditions are either baseline RCR Windkessel or completely absorbing. The model is divided into upper- and lower-body arterial segments, as illustrated in Fig. 3.4a.

3.2.1.3 PPG Features

The DVP waveform is characterised by several distinct features. In Fig. 3.3 an example digital area waveform is annotated with the key features studied within this work. The features are as follows:

1) \(dT\): Time between the first (systolic) and second (diastolic) peak of the DVP waveform. Timing is related to the time taken by the waveform to propagate from the heart to the periphery and back to the measurement site [Elgendi, 2012]. \(dT\) has been shown to be related to the central pulse pressure [Baruch et al., 2014], and inversely related to a biomarker of arterial stiffness [Millasseau et al., 2002a].

2) \(CT\): Crest time. The time from the foot of the waveform until the first peak. Here we define the foot of the waveform to be the minimum of the waveform. Dillon & Hertzman [1941] showed that in patients with hypertension and arteriosclerosis the crest time is extended.
Figure 3.3: A typical cross-sectional area waveform at the digital artery and their characteristic parameters. $dT =$ time between systolic and diastolic peaks; $CT =$ crest time; $Width =$ pulse width at half height of the systolic amplitude; $PD =$ peak of diastole; $PS =$ peak of systole. ‘Area’ is the hatched area in green.

3) PS: Pulse systole. The pulse amplitude between the minimum and maximum values of the DVP. It is an indicator of the pulsatile changes in blood volume by blood flow at the measurement site [Elgendi, 2012]. The work of Cannesson et al. [2007] has shown that is possible to predict fluid responsiveness in mechanically ventilated patients during general anaesthesia utilising this parameter.

4) PD: Pulse Diastole. The pulse amplitude of the second peak. Millasseau et al. [2002a] have shown that the pulse amplitude decreases with infusion of nitroglycerine in healthy subjects.

5) $Width$: The pulse width of the PPG waveform at half the height of the systolic amplitude. Awad et al. [2007] have shown that the width is sensitive to changes of systemic vascular resistance.

6) $Area$: The integrated area under the PPG waveform across one cardiac
cycle (limited by diastole). The work of McGrath et al. [2011a] has shown a high correlation between the area under the curve and ventricular stroke volume.

It is noted that additional parameters exist in the literature such as the stiffness index [Millasseau et al., 2006], reflective index [Millasseau et al., 2006], age index [Utami et al., 2013], and further parameters extracted from the second derivative [Baek et al., 2007; Elgendi, 2014; Takazawa et al., 1998], but their application is not within the scope of the thesis aims.

3.2.2 Results

The effect of peripheral properties is shown in Fig. 3.4. Fig. 3.4c shows that two peaks are still present in the digital area waveform without a change in their arrival time when all peripheral reflections have been removed from the baseline model (model P1). This result suggests that both peaks are predominantly made up of wavefronts propagating from the aortic root and their reflections at arterial junctions, tapered vessels, and the aortic root. However, peripheral reflections do effect the arrival time of the first peak: it arrives 30 ms earlier when upper-body peripheral reflections are absent. Removing peripheral reflections from only the lower-body segments (P2) results in an area waveform with a greater magnitude than if peripheral reflections are removed from only upper-body segments (P3). This result indicates that peripheral reflections originating in the upper body have a greater contribution to the magnitude of the digital area waveform than do peripheral reflections originating in the lower body. The second peak arrives at approximately the same time in models P2 and P3, but the first peak arrives 52 ms earlier in model P3, suggesting that peripheral reflections in the upper body delay
the arrival time of the first peak. Additionally, the amplitude of the second peak is dependent on the existence of peripheral Windkessel sites in the upper body. It is noted that the difference in mean pressure waveforms is due to the total arterial resistance varying across each simulation [Leguy, 2010].

Figure 3.4b shows the pressure waveform at the aortic root. Similarly to the results described above for the DVP, the type of boundary conditions affects the time of arrival of the peak of systole by 20ms. Furthermore, during diastole the rate of decay is faster when all peripheral boundary conditions are absorbing (P1), compared to when just the upper body is an absorbing boundary conditions (P3). The diastolic pressure is modified by the absorbing boundary condition because we change the total peripheral resistance. The total peripheral resistance varies from 87.1, 0, 1.1 and 4.5 10^8 Pa s m$^{-3}$ for model P1, P2, P3 and P4, respectively.

Figure 3.5 shows example pressure waveforms at the aortic root under changes in Windkessel outflow pressure, peripheral resistance, elastic and muscular cross-sectional diameter, or elastic and muscular stiffness variations (as defined in Section 3.2.1.1). Increasing Windkessel outflow pressure or peripheral resistance translates the mean pressure waveform up, but maintains the overall morphology of the pressure waveform. Changing the elastic and muscular diameter alters the shape of the pressure waveform in systole and diastole. Increasing the elastic diameter by 60% causes a 10% decrease in the peak pressure and introduces a delay in the arrival of systolic pressure of 7ms. During diastole the decay of the waveform is less steep. A 60% increase in muscular diameter decreases the peak pressure by 19%, similar to V3 the decay during diastole is less steep compared to the baseline model. Increasing elastic (V5) and muscular (V6) stiffness results in a faster decay of pressure during diastole and in an increase in peak pressure, when compared to
Figure 3.4: (a) Schematic representation of the 120-artery model modified from Epstein et al. [2014]. (b) Pressure waveform at the aortic root. (c) PPG waveform measured at the digital artery under the three different combinations of absorbing and Windkessel outflow boundary conditions described in Table 3.5.
the baseline model

Figure 3.5: Pressure waveform at the aortic root under normal conditions (B), with a 200% increase in Windkessel outflow pressure (V1, left), a 120% increase in peripheral resistance (V2, left), a 60% increase in elastic diameter (V3, centre), a 60% increase in muscular diameter (V4, centre), a 200% increase in elastic stiffness (V5, right), or a 200% increase in muscular stiffness (V6, right).

Figure 3.6 shows the change in the DVP features dT, CT, PS and PD when Windkessel outflow pressure, peripheral resistance, elastic and muscular cross-sectional diameter, and elastic and muscular stiffness are varied. The least significant contributor to changes in dT, CT, PS and PD is V1 (variants of Windkessel outflow pressure). Similarly, V2 (changes in peripheral resistance) has a very small contribution. This is because peripheral resistances and Windkessel outflow pressure affect mainly the magnitude of the digital area waveform, without introducing considerable changes in the dT. These variations in DVP waveforms are in agreement with the well-known increase in mean blood pressure with increasing peripheral resistance and increasing Windkessel outflow pressure [McDonald, 1974]. Area and pressure changes follow a similar pattern because they are directly related through Laplace’s law [Alastruey et al., 2011; McDonald, 1974].

The time between the systolic and diastolic peaks, dT, has been shown to be inversely proportional to large artery stiffness [Millasseau et al., 2002b]. Within
Figure 3.6: Change in dT, CT, PS, and PD at the DVP when Windkessel outflow pressure, peripheral resistance (left), elastic and muscular cross-sectional area (centre), and elastic and muscular stiffness (right) are varied from baseline conditions.
this sensitivity analysis, there is very little change to \(\text{d}T \) when alterations in the elastic stiffness (V5) are considered. However, with an increase of the stiffness of the muscular arteries (V6) there is a negative correlation to \(\text{d}T \); hence the stiffness index \(SI = \frac{H}{\text{d}T} \), where \(H \), is the height of the patient) would increase. An increase of muscular stiffness of 200% decreases \(\text{d}T \) by 30%, whereas a change of elastic stiffness of 200% decreases \(\text{d}T \) by less than 2%. Changes in elastic diameter (V3) created a nonlinear change in \(\text{d}T \) times, which suggests that \(\text{d}T \) results from a complex interaction of wave propagation and reflection within the 1-D domain.

The arrival of the crest of the waveform (CT) is negatively correlated to an increase in V5 and V6. Compared to baseline, an increase of elastic and muscular stiffness of 200% caused a decrease in CT of 5 and 19 ms, respectively.

Increasing elastic stiffness (V5) creates an increase in PS and PD. Whereas an increase in muscular stiffness (V6) causes a decrease in PS and PD. The opposing direction of correlation is due to the complex set of wave reflections that make up the area pulse waveform. An increase in aortic cross-sectional diameter (V3) has a negative influence on PS and PD.

The most significant contributor to changes in \(\text{d}T \), CT, PS and PF is V4 (muscular cross-sectional diameter), this is due to the measurement site (the digital artery) being defined as a muscular artery. Thus, the characteristics of the measurement site are directly changed as part of the sensitivity analysis procedure. There is a strong positive correlation between PS, PD, and \(\text{d}T \) and V4. CT is negatively correlated with V4.

Figure 3.7 shows the change in PPG Width and Area with changes in V1, V2, V3, V4, V5 and V6. Similar to Fig. 3.7, changes in Windkessel outflow pressure and peripheral resistance (V1 and V2) have a negligible effect on PPG Width and
Figure 3.7: Change in Width and Area at the DVP PPG when Windkessel outflow pressure, peripheral resistance (left), elastic and muscular cross-sectional area (centre), and elastic and muscular stiffness (right) are varied from baseline conditions.
Area. There is an increase in PPG Width with increase in V3 and V6. Again, muscular diameter variation (V4) affects width and area significantly.

An increase of elastic stiffness of 200% created a 5 mm² increase in Area. However an increase in muscular arterial stiffness causes a smaller pulse amplitude at the digital artery, hence a decrease in the measured area. An increase in muscular stiffness of 200% caused a 14 mm² decrease in Area.

3.2.3 Discussion

The sensitivity analysis allows us to identify the parameters which influence significantly the model outputs. In our model the muscular cross-sectional diameter has a great influence on PPG waveform features. Within our methodology, by altering the muscular cross-sectional diameter we directly altered the characteristics at the measurement site (the digital artery). This result is similar to that found by Willemet [2012] when considering a femoral bypass.

One objective of the sensitivity analysis is to determine the parameters which do not influence the outputs significantly. In our model, Windkessel outflow pressure and peripheral resistance have a negligible influence on PPG waveforms.

Thiele et al. [2011] looked at the relation between PPG derived parameters and invasively-determined haemodynamic variables in 18 patients undergoing coronary artery bypass graft surgery. They found no significant relation between the peripheral resistance and the area or width of the PPG waveform. These findings are also seen within this sensitivity analysis.

Increase in arterial wall stiffness raises the amplitude, thus Area, of the digital area waveform due to an increase in pulse pressure caused by the Windkessel
effect, as described in Alastruey et al. [2014] using the 1-D formulation. Within this sensitivity analysis we found that an increased arterial stiffness resulted in a decreased CT. This is in contradiction to the work of Dillon & Hertzman [1941]; Wu et al. [2010] who found that CT increased in the presence of increased arterial stiffness. However, when considering the physics of the problem, it is reasonable to expect a faster arrival of the peak of the pulse waveform when the arterial network it is travelling through is stiffer (hence, pulse waveforms are transmitted faster).

The results from this sensitivity analysis suggest that it is not possible to quantify the elastic or muscular arterial stiffness of the arterial network from the amplitude of the digital pulse waveform from the parameters varied within this study. This is shown by considering the mixed effect of changes in elastic and muscular stiffness on PS, PD and Area. However, timings such as CT and DT may be useful in identifying the stiffness of the muscular arteries because of their sensitivity to such changes as seen in Fig. 3.6.

It is noted that one important consequence of using a local sensitivity analysis is that results depend on the initial state. In this analysis, the initial state is described in Section 3.1. One might consider more complex techniques such as global sensitivity analysis to overcome that simplification. But this is beyond the scope of this study.

Lastly, the inflow waveform remained unchanged in this study, which may explain the discrepancy between numerical and clinical results reported above. In the following section we address this limitation by investigating the effect of changes in inflow waveform variations on the DVP.
3.3 Inflow Waveform Variations

In this section we aim to understand how changes in the aortic flow waveform modify the shape of the DVP waveform. We will prescribe 27 different aortic flow waveforms to the inlet of our 120-vessel nonlinear viscoelastic model and quantify the changes in the cross-sectional area at the digital artery.

The aortic inflow waveform can be separated into four main stages (see Fig. 3.8, top left): 1) An early rapid rise to a systolic peak at around 100ms after the arrival...
of the foot of the wave; 2) a convex fall in flow until the end of systole at around 300ms; 3) a short period of back flow; and 4) a period of no flow for the rest of diastole [ORourke, 2009].

Within this study we systematically alter 3 dependent variables at flow waveform at the aortic root. The first is the shape of the flow waveform during systole, varying it from what would be found in a normal young, medium and old patient (left, Fig. 3.8). Secondly we vary the period of systole ±25% (center, Fig. 3.8). Finally varying the time of peak systole −20%, +40% (right, Fig. 3.8). With each variation the mean flow is kept constant at 5 l min$^{-1}$, hence the peak systolic flow changes to maintain the mean flow.

The motivation for the change in flow waveform shape with age is taken from ORourke [2009]. The young flow waveform has a parabolic shape between the systolic peak and dicrotic notch, whereas the old waveform has an inflection point along the decreasing systolic edge which results in a convex curve. To cover a range of physiological values we vary the time of systole between 252-420 ms [Weissler et al., 1961] and time of peak systole between 77-128 ms [Gardin et al., 1984].

Within this section we will first describe aortic flow (Section 3.3.1) and aortic pressure (Section 3.3.2) parameters that are evaluated as part of this study. The measured PPG variables studied within this work are taken from Section 3.2.1.3 (see Fig. 3.3). We will then present the results of our analysis (Section 3.3.3). The last part of this section discusses the results and observations (Section 3.3.4).
3.3.1 Aortic Flow Features

The key features of the flow waveform at the aortic root are displayed in Fig. 3.9 and described next.

Figure 3.9: A typical pressure (left) and flow waveform (center) at the aortic root, and cross-sectional area waveform at the digital artery (right) and their characteristic parameters. Where PP= pulse pressure amplitude, CQT= crest flow time, PQ= peak flow, dT= time between systolic and diastolic peaks, CT= crest time, Width= pulse width at half height of the systolic amplitude, PD= peak of diastole, and PS= peak of systole.

1) CQT. Crest flow time. The time to peak aortic velocity. In healthy patients the CQT at the aorta is shown to vary between 80-120ms [Gardin et al., 1983]. In this study we vary CQT between 61-159ms to cover the range of physiological values seen in a healthy population. These maximum and minimum values were selected as they were ± 37ms from the original value of 98ms. The timing of the crest is dependent on an early forward compression wave from the heart [Jones et al., 2002]. CQT has been used to predict severe aortic stenosis [Kim et al., 2014].

2) PQ. Peak flow at the aorta. PQ is an index of myocardial contractility [Rowland et al., 1999]. Mitchell et al. [2003] found in normotensive male patients (n=19) a peak flow of 351±69 ml s^{-1} (mean ± SD). Nichols et al. [1977] found a
PQ value of 712 ± 53 ml s$^{-1}$ (mean ± SEM) in healthy patients undergoing cardiac catheterization. In this study we vary PQ between 343-723 ml s$^{-1}$ in order to cover the full range of physiological values found in the literature. An increase in peak flow at the aortic root is seen in patients with a bicuspid aortic valve [Ferencik & Pape, 2003; Nkomo et al., 2003], aortic regurgitation [Masuyama et al., 1986], or increased body surface area [Gardin et al., 1987].

3.3.2 Aortic Pressure Features

The arterial pressure at the aortic root is directly altered by changes in the aortic flow waveform. The work by Baruch et al. [2011] has found a correlation between pulse pressure at the aortic root and dT at the DVP. Thus, the key feature of the pressure waveform at the aortic root considered in this study is:

1) PP. Pulse pressure at the aortic root. Pulse pressure is correlated with the stroke volume of the aortic flow [Convertino et al., 2006]. In our model, a change in the prescribed inflow boundary condition affects the measured pulse pressure at the aortic root. Within this study, PP is varied between 5.8-7.6 kPa, which covers a normal physiological range [Benetos et al., 1998].

3.3.3 Results

We have modified the aortic flow waveform by (i) changing the shape during the downslope of systole to replicate the effect of ageing; (ii) altering the period of systole by ±25%; and (iii) altering the time of arrival of peak systole by −20% and +40% whilst preserving the overall period of systole. With each modulation the stroke volume, and heart rate are preserved. CQT and PQ vary between 61-
159 ms and 343-723 ml s\(^{-1}\) respectively. We have focussed on the haemodynamics of the digital artery as it can be easily measured continuously and non-invasively; \textit{e.g.} by photoplethysmography.

The influence of age on the DVP is shown in Fig. 3.8 (left). During the downslope of systole the shape of the older waveform is concave, whereas the younger waveform is flat. The medium waveform is an average between the other two. The resultant change to the DVP is small: with increasing age, the CT decreases.

The influence of time of systole on the DVP is more significant (Fig. 3.8, centre). Altering the timings by \(\pm 25\%\) results in a significant change to the time of arrival and to the absolute values of the systolic and diastolic peaks. With each step increase in the time of peak systolic flow, the time of arrival for the DVP systolic peak increases by 20 ms, and the time of diastolic peak by 40 ms.

The impact of the timing of peak systolic flow is seen in Fig. 3.8 (right). The most noticeable change in the DVP is seen in the timing and absolute values of the systolic peak of the DVP. With decreasing time of CQT, from \(+40\%\) to 0 to \(-20\%\), there is a decrease in CT at the DVP of 20 ms and 10 ms, respectively.

Figure 3.10 compares the change in CQT at the aortic root, to changes in dT, CT, PS, PD, Width and Area of the DVP in all 27 variations of the inflow waveform (as described in Section 3.3). For each pairing the linear regression equations \(y = ax + b\) and correlation coefficient \(r^2\) are shown in the top right hand corner. The coefficient of determination \(r^2\) vary from 0.09-0.91, the best correlation being CT against CQT (Fig. 3.10b). In Fig. 3.10b we see that the linear fit model underestimates the young waveforms, well matches the medium waveforms, and overestimates the old waveforms. There is a poor correlation between CQT and dT, PS, PS, Width and Area. Additionally, there is no clear pattern between the
simulated physiological age of the waveform and the dependent variables of dT, PS, PD, Width and Area. The outlier indicated in Fig. 3.10a is plotted in Fig. 3.13.

Figure 3.11 compares changes to the pulse amplitude of the input flow waveform to changes in dT, CT, PS, PD, Width and Area of the DVP. Correlation coefficients vary from 0.09-0.95. The correlation coefficient for dT, PS, PD, Width and Area against PQ is higher than in Figure 3.10. There is a very high correlation (0.95) for PS against PQ (Fig. 3.11c). The same outlier indicated in Fig. 3.11a is plotted in Fig. 3.13.

Figure 3.12 compares the changes to the PP at the aortic root to changes in dT, CT, PS, PD, Width and Area of the DVP. Correlation coefficients vary from 0.08 to 0.90. The two highest correlation coefficients are for PD and PS against PP, 0.89 and 0.9, respectively. When the outlier is removed from Fig. 3.10a, the correlation coefficient increases to 0.28. Similarly, when the outlier is removed from Fig. 3.11a and Fig. 3.12a the correlation coefficient increases to 0.62 and 0.79, respectively.

3.3.4 Discussion

In this study we have analysed how the shape of the prescribed inflow at the aortic root affects the simulated DVP. By systematically altering the shape of the inflow whilst maintaining the stroke volume constant, we have been able to assess how the DVP waveform changes independently of mean blood pressure changes. To carry out this study we have used a nonlinear, viscoelastic 1-D model of the larger 120 systemic arteries, including the vasculature of the hands and the head.

PPG has been shown to be useful in determining the heart rate [Lu et al., 2008;
Figure 3.10: Plots comparing the crest flow time (CQT) at the aortic root against the time between the arrival of the systolic and diastolic shoulder (dT), crest time (CT), peak of systole (PS), peak of diastole (PD), width at half amplitude (Width), and area under the curve (Area) at the DVP. The age of the plotted inflow is defined as young (red), old (black) and medium (blue).
Figure 3.11: Plots comparing the peak flow (QP) at the aortic root against the time between the arrival of the systolic and diastolic shoulder (dT), crest time (CT), peak of systole (PS), peak of diastole (PD), width at half amplitude (Width), and area under the curve (Area) at the DVP. The age of the plotted inflow is defined as young (red), old (black) and medium (blue).
Figure 3.12: Plots comparing the pulse pressure (PP) at the aortic root against the time between the arrival of the systolic and diastolic shoulder (dT), crest time (CT), peak of systole (PS), peak of diastole (PD), width at half amplitude (Width), and area under the curve (Area) at the DVP. The age of the plotted inflow is defined as young (red), old (black) and medium (blue).
Figure 3.13: Two examples of a PPG waveform (bottom) and their respective inflow waveforms (top). Both waveforms have had an ‘old’ waveform with systolic period varied +25% prescribed to the inlet. The outlier (right) has had its time of peak systole decreased to 80% where as the normal (left) waveform time of peak systole is at baseline conditions (0%).
Nakajima et al., 1996, systolic blood pressure [Talke et al., 1990; Wallace et al., 1987], and sympathetic tone [Tanaka et al., 2000] of the cardiovascular system. The second derivative of the PPG waveform has been correlated with carotid artery distensibility [Imanaga et al., 1998], age [Baek et al., 2007], atherosclerosis [Bortolotto et al., 2000], and coronary heart disease [Otsuka et al., 2006]. However, there is little research on how changes in the heart timings and contractility alter the shape of the PPG waveform at the digital artery directly. Due to the complex nature of the cardiovascular system, it is difficult to change certain parameters independently. For example, within a given population if you wish to see the effect of time of the systolic period of the heart, then heart rate will also change, which would have to be adjusted for in any evaluation of the DVP [Weissler et al., 1961]. The limitations seen in vivo can be overcome using our computational model.

There is a strong linear relationship between the CQT at the aortic inlet and CT at the finger. During early systole it is assumed there are no reflections from peripheral locations, thus there is only the forward travelling wave from the heart. Therefore, the time taken for the peak of the DVP waveform (CT) is equal to the time of the peak of the flow at the aortic root (CQT) plus the time it takes the wavelet to travel along the cardiovascular system to the site of the digital artery. The travel time is dependent on the PWV and distance of the path travelled by the forward travelling wave.

The high correlation coefficient (0.95) between PS at the DVP and PQ at the aortic root is best explained by considering pulse wave theory. During early systole we assume there are no reflected waves from peripheral locations, hence the time of peak systole of the pressure and flow waveform (hence area waveform) are linearly
related. This does not hold true for late systole and diastole where reflected waves interact with the forward waves. The complexity of interaction creates a nonlinear relation between pressure and flow. Therefore, the peak aortic flow is proportional to peak DVP.

The work by Baruch et al. [2011] has found a positive correlation between pulse pressure at the aortic root and dT at the DVP. With the removal of the outlier in Fig. 3.12 there is a strong correlation coefficient of 0.79, however the slope of the line is negative; whereas Baruch et al. [2011] found a positive relationship between the two parameters. It is noted that in the work by Baruch et al. [2011] they are studying negative body lower pressure, which creates changes in the peripheral vascular tone, which is not represented by our model. Hence the reason for the lowering of pulse pressure within their studies is due to a redistribution of blood throughout the cardiovascular system, whereas we are simulating a constant volume of blood at the inlet to our model with only slight changes in the shape of the inflow waveform. These, therefore, cause subtle changes to the pulse pressure due to the timings of the wave reflections.

Within this study, Width at the DVP is poorly correlated with PQ and CQT. Current literature suggests pulse width is dependent on heart rate [Hickey et al., 2015] and stroke volume [Thiele et al., 2011]. Both these variables are kept constant within this study.

The outlier indicated in Figs. 3.10a to 3.12a is the result of an old aortic inflow waveform with −20% arrival time of peak systole and a period of systole +25%. Fig. 3.13 compares the inflow and DVP waveforms for this outlier with corresponding waveforms for a ‘normal’ case. Due to the fourth order polynomial fitted during the downslope of systole, a convex shape is seen with a steep secondary shoulder.
This irregular bump causes a non-physiological peak at the DVP much earlier than the other inlet waveforms considered, indicated at dT in Fig. 3.13 (right).

To summarise, within this numerical study CT and PS at the DVP are strongly linearly related to CQT and PQ at the aortic root. When the stroke volume and heart rate are preserved, and only changes to the shape of the aortic flow waveform are considered, variations in CQT and PQ at the aortic root do not have a significant influence on the dT, PD, Width or Area of the DVP.

3.4 Concluding Remarks

Within this chapter we have studied the behaviour of a coupled visco-elastic 1-D/0-D model of blood flow in the major arterial vessels. The baseline model from Reymond et al. [2009] was extended to include the vasculature of the hands and cerebral circulation. A local sensitivity analysis has been carried out to study how the shape of the PPG signal at the digital artery in the hand is affected by changes in cardiovascular properties.

Comparison of the model simulations against *in vivo* measurements taken from the literature gives good results at the aorta, carotid, radial, brachial, femoral and digital arteries. We have compared the model qualitatively against the shape of pressure, flow and area waveforms from different sources. The generic model well predicted *in vivo* measurements from an average healthy population. Results have shown that the model is able to reproduce the main aspects of physiological flow in the large arteries, cerebral circulation and hands. Some improvements are necessary in order to obtain optimal reproduction of data at the temporal artery, since our model may produce unphysiological oscillations at this site. However,
waveforms in the head are more complex and exhibit more variations in their shape due to anatomical variation which may partially account for the discrepancy at this site [Reymond et al., 2009].

In our model the arterial wall was simulated as a viscoelastic and incompressible material. It was necessary to estimate the viscous term in the Kelvin-Voigt model due to very little available data in the literature on the viscoelastic properties of the human arterial wall. The introduction of the viscous term has been shown to induce considerable variation in the shape of pressure and flow waves, especially in peripheral sites [Reymond et al., 2009]. Inclusion of the viscous term reduces underdamped high-frequency oscillations. In our model we still experience high-frequency oscillations in the temporal arteries, which may be due to an incorrect estimate of vessel wall viscosity in the cerebral arteries.

Each vessel of our 120-artery model is represented as having a tapering cross-sectional area from the proximal to distal end. The effect of tapering vessels is important in determining the shape of pressure and flow waveforms [Segers & Verdonck, 2000]. However, within our model the vessels of the hand have a constant diameter, due to lack of data on arterial tapering at this site. Since the length of the vessels in the hand is small (less than 3cm), the difference between a tapered and non-tapered vessel is negligible [Myers & Capper, 2004].

In this work we have conducted a local sensitivity analysis. Results are based on the analysis from the baseline model validated at the beginning of this chapter. One objective of this sensitivity analysis has been to determine which parameters of the haemodynamic network influence outputs of the model. In this work we have focussed on the influence to the area waveform at the digital artery, which is analogous to the DVP PPG [Avolio, 2002].
To reduce the complexity of the sensitivity analysis, the arterial network was subdivided into muscular and elastic arteries. The elastic arteries consisted of the vessels of the aorta, the carotid arteries, and the iliac bifurcation. The muscular arteries were defined as all other remaining arteries. This subdivision was motivated by the opposing effects of ageing on central large arteries and on distal muscular medium-sized arteries [Boutouyrie et al., 1992; O’Rourke, 2007]. The classification of the carotid artery as an elastic artery was motivated by \textit{in vitro} [Gussenhoven et al., 1989; Lockwood et al., 1992] and \textit{in vivo} [Boutouyrie et al., 1992] studies. The vessels of the iliac bifurcation have been classified as ‘musculo-elastic’ [Rees, 1968], elastic [Cronenwett & Johnston, 2014; Fajardo et al., 2001; Singh, 2010] and muscular [Gussenhoven et al., 1989; Wilkinson et al., 2002] within the literature; for the purpose of this thesis we have classified them as elastic. By classifying the iliac bifurcation as an elastic artery, the reflection coefficient (a parameter describing how much of a pulse wave is reflected) at the aortic-iliac bifurcation remained between -0.3 and 0.3, a physiologically applicable range [Greenwald et al., 1990]. A similar classification was made in the work by Willemet et al. [2015], however they chose to classify the carotid artery as a muscular artery even though the carotid presents structural properties closer to the aorta (thus being an elastic artery). Additionally, Willemet et al. [2015] considered the iliac vessels as muscular, thus necessitating post-processing of the data to exclude unphysiological aortic-iliac reflection coefficients. Furthermore, we have considered different ranges of variation of the diameter and arterial stiffness for the elastic and muscular arteries; this difference was motivated by the available data found in the literature.

In our model, peripheral resistance and Windkessel outflow pressure have little influence on the shape of the PPG waveform. Notably the PPG waveform was
very sensitive to changes in diameter and stiffness in muscular arteries. The work of Willemet [2012] highlighted that the variation of the properties in one vessel are transmitted in all pressure waveforms but that the effects on velocity signals are more local. This would suggest the model sensitivity to changes in muscular arteries to be profound, since the the digital artery is classified as a muscular artery.

Central arterial stiffness has been identified as a important biomarker of health, however how best to measure this non-invasively is an area of considerable research [Laurent et al., 2006]. Whether it is possible to accurately detect changes using PPG contour analysis presents a further challenge [Allen & Murray, 2003; Dillon & Hertzman, 1941; Hashimoto et al., 2002; Millasseau et al., 2002b; Takazawa et al., 1998]. Our sensitivity analysis suggests that the most useful parameters at the digital PPG for assessing central arterial stiffness would be the crest time (CT) and the systolic pulse (PS).

The sensitivity analysis has also allowed us to analyse how the shape of the flow waveform from the heart transmits to the area waveform at the digital artery. Here we found a strong correlation between the time to peak flow (CQT) at the aortic root and the time to peak area (CT) at the digital artery. Similarly, there was a strong correlation between the pressure amplitude at systole (PQ) and the peak systolic amplitude of area at the digital artery (PS).

Similar to the work of Ellwein et al. [2008]; Leguy et al. [2010]; Willemet [2012], the local sensitivity analysis has shown the complex relationship between input parameters and boundary conditions to the model. Furthermore, as parameters act dependently on each other, it would be interesting to determine the correlation between parameters by applying global changes to the input parameter space. This
3.4.1 Clinical Perspective

A central premise of this work is that cross-sectional area at the digital artery is analogous to the PPG waveform. PPG is widely used in the clinical setting and provides a continuous non-invasive circulatory signal with which to assess cardiovascular function.

One drawback of measuring the PPG signal is the inter-subject variability. The strength of the measured signal can be changed by the contact force from the device onto the finger [Teng & Zhang, 2004]. At the moment there is no calibration procedure to standardise the PPG amplitude to compare one patient to the next [Shelley, 2007]. A further drawback of this method is the intra-subject variability of the recording in pulse amplitude [Teng & Zhang, 2004]. The finger tip contains an abundance of alpha adrenergic receptors which cause artery and vein vasoconstriction, thus causing the blood flow at the digital artery to be sensitive to sympathetic activity and changes to temperature [Hertzman & Roth, 1942; Schmid-Schönbein, 1981]. Additionally, when comparing our cross-sectional area at the digital artery to clinical PPG measurements it should also be noted that the derived signal from commercial devices are heavily processed and filtered [Feldman, 2006].

The numerical signal simulated within this thesis is free from all the inter- and intra-subject variability described above, and is recorded at a high frequency. Where possible we have compared any results derived from the PPG waveform to the existing literature in order to build confidence in the techniques used in this
chapter. However, further work needs to be done to apply the results from this numerical study to real clinical data.
Chapter 4

Classifying Hypertensive Vs Diabetic Subjects: a Virtual Population Study

Hypertension and diabetes are two of the most common chronic diseases in the western world, with a high rate of co-occurrence [Bella et al., 2001; Epstein, 1997; Epstein & Sowers, 1992; Franklin, 2002; Fuller, 1985; Kannel & McGee, 1979; Lago et al., 2007; Megnien et al., 1992; Sowers et al., 2001; Stehouwer et al., 2008]. Currently one-third of all people with type 2 diabetes may be undiagnosed [American Diabetes Association, 1999], and among US adults with hypertension, 17.3% were undiagnosed [Mozaffarian et al., 2015]. There is a significant overlap in risk factors between the two cohorts, such as large artery stiffness and microvascular arterial changes appearing in hypertensive and diabetic patients [Yannoutsos et al., 2016]. These studies suggest that there is significant room for improvement in the screening, prevention and management of diabetes, hypertension and combined diabetes
and hypertension.

The goal of this study is to use 1-D modelling to investigate whether the shape of the PPG waveform measured in the finger could be used to distinguish among subjects with diabetes, hypertension, and combined diabetes and hypertension. The 1-D model described in Chapter 3 will be used to create a virtual (computed) population of healthy and diseased subjects. A global sensitivity approach will be carried out to match the output parameters of the 1-D model to corresponding parameters from the literature data of patients with diabetes, hypertension, and combined diabetes and hypertension.

Patient-specific, 1-D simulations of blood flow have been shown to be useful in the estimation of arterial stiffness [Leguy et al., 2010], guiding vascular surgery [Huberts et al., 2012a; Willemet, 2012], and predicting aneurysm rupture [Blanco & Feijóo, 2013]. Additionally, 1-D models can be used to estimate clinically relevant parameters at sites that are inaccessible to measurements [Leguy et al., 2010; Stergiopulos et al., 1995, 1999]. The number of arterial segments used in 1-D modelling varies from a single vessel to 4 million arterial segments [Avolio, 1980; Blanco et al., 2014; Campbell et al., 1989; Mynard & Nithiarasu, 2008; Perdikaris et al., 2014; Reymond et al., 2009; Stergiopulos et al., 1992]. The larger the arterial model, the more input parameters are needed. Since it is not always feasible to derive every input parameter from patient data, it is then necessary to estimate or extrapolate data from literature [Blanco et al., 2014; Leguy, 2010]. The greater the complexity of the model, the more uncertainty there is in the results of the model [Quick et al., 2001, 2006].

Most 1-D models of the systemic arterial tree are sourced from the work of Westerhof and Nordergraaf [Noordergraaf et al., 1963; Westerhof et al., 1969]. Ef-
forts have been made to personalise aspects of larger models [Bode et al., 2012; Manini et al., 2013; Mynard & Nithiarasu, 2008; Reymond et al., 2011] or entire smaller models [Leguy et al., 2010; Willemet, 2012] to patient-specific data. Sensitivity analysis approaches have been successful in personalising stiffness variables [Leguy et al., 2010] and identifying the most influential input parameters [Huberts et al., 2012b, 2013; Leguy et al., 2011] in patients undergoing surgery. However, this approach has been limited to smaller data sets.

Previously, Willemet et al. [2015] created a database of numerical models using literature data for healthy patients by altering the vessel diameter and stiffness of elastic and muscular arteries, heart rate, stroke volume and total peripheral resistance. Kiselev et al. [2015] personalised a 1-D haemodynamic model by altering the total peripheral resistance, heart rate, stroke volume, cross-sectional area and stiffness of the upper and lower body to data of patients with mixed cardiovascular disease.

Large-scale patient trials are a rich source of data that has never been fully integrated into the field of 1-D blood flow modelling. Parameters such as diastolic pressure (DBP), systolic pressure (SBP), mean pressure (MAP), pulse pressure (PP), and heart rate (HR) have been shown to have significant value in the diagnosis or treatment of patient mortality disease risk [Franklin et al., 1999; Kannel et al., 1971, 1987; Meaume et al., 2001]. Increasingly pulse wave velocity is being measured as a predictor of cardiovascular outcome and measured in patient trials [Laurent et al., 2006; Willum-Hansen et al., 2006]. However, the unique functional origin for changes of these variables remains an area of considerable research [Karamanoglu et al., 1994]. A processing strategy is needed to make sense of the data available, and a statistical approach to manage the relevance of existing data.
from the literature. It is possible to extract further information from the literature by creating a 1-D nonlinear model of pulse wave propagation to create a fictive population that matches the literature data. It is then possible to extract new information from the numerical model further to the existing literature data.

For the application of a diseased-population-specific simulation, a number of population-specific input parameters are required. We have already completed a local sensitivity analysis in Chapter 3. The local sensitivity analysis allowed us to study the effect of each parameter from a specific initial state of the model by perturbing each input parameter around a nominal (baseline) value one at a time. This type of analysis has been used extensively [Ellwein et al., 2008; Gul et al., 2015; Huberts et al., 2013; Leguy et al., 2010; Pope et al., 2009; Willemet, 2012]. However, the results from such an analysis are highly dependent on the initial state that the input parameters are perturbed from, and the same results cannot be extrapolated to other initial states without further analysis. A global sensitivity analysis assesses the interactions of the input parameters over the entire feasible region. Additionally, a global sensitivity analysis quantifies the impact between the input parameter and their output variable.

How best to select the input parameters to achieve this goal is not straightforward, and can be computationally very expensive. For this purpose we will use a Response Surface Methodology (RSM) to select physiologically feasible input parameters. RSM is a mathematical-statistical method used for studying the interactions between the input and output variables of a model. RSM has been used extensively to help researchers in the fields of drug delivery systems [Singh et al., 2006], textile industry [Demirel & Kayan, 2012], and biodiesel production [Vicente et al., 1998]. The objective of using RSM is to optimise the input variables to
attain the best match to the desired output variables of a given model.

Within this Chapter, we extend our results from those of a single patient-specific model of the cardiovascular system (as seen in Chapter 3) to create a population of blood flow models under different diseased states. The disease states studied are diabetes, hypertension, and combined diabetes and hypertension. Section 4.1 describes the methodology to create the population and analyse cardiovascular indices calculated from the pulse waveforms. Results are described in Section 4.2 and discussed in Section 4.3.

4.1 Methodology

The series of diseased models explored in this chapter are designed using a RSM approach. RSM is composed of three main activities; the design of experiment, response surface estimation, and optimisation. The design phase consists of selecting a distribution of points in the input variable domain using a factorial design. Initially, a relatively coarse grid search over a physiological range of input parameters is considered. This helps us to understand the complex interactions between input parameters and the pressure and flow waveforms resulting from the numerical simulations. The eight varied input parameters are muscular and elastic diameter, muscular and elastic stiffness heart rate, stroke volume, total peripheral resistance and outflow pressure. The goal is to find the boundary over the input parameters resulting in jointly admissible output parameters.

1This study was conducted in collaboration with Medici Tech Ltd. The specific statistical design used in this study was conducted by Dr Erik Erhardt. Dr Erhardt designed the optimal input parameters for the numerical simulation to well represent a population of healthy and diseased subjects. The extensive literature review used to derive the input parameters, and all numerical simulations using 1-D modelling were conducted by myself. The methodology for the classification of the final fictive population into diseased states was created by Dr Erhardt.
From this initial run of simulations we are able to establish a relationship between input and output variables using a low order polynomial approximation. The relationship between input variables to output vectors is known as the response surface.

The optimisation phase of the RSM approach is an iterative process to find the best design variables to create a population of blood flow models that match characteristics of diseased cardiovascular systems. The results of the response surface are used to successively refine the input range for the simulations.

Within this section we describe the RSM (Section 4.1.1) used to create the fictive population. Section 4.1.2 briefly covers the random forest classification tool used to identify the disease state of the numerical model. In Section 4.1.3 we describe the search strategy of published cross-sectional studies looking at diabetic, hypertensive, and diabetic and hypertensive cohorts.

4.1.1 Response Surface Methodology (RSM)

Response surface methodology (RSM) combines experimental design, regression modelling, and optimisation techniques to relate one or more responses of a dependent variable to multiple inputs [Box & Wilson, 1951; Myers et al., 2009]. RSM assists in finding the input region in which the optimal or target response(s) occurs.

In this work the input region \(x\) refers to the input parameters to the 1-D numerical model to simulate measured output parameters \(y\) such as systolic, diastolic pressure, and PWV. Since the 1-D model is governed by a system of nonlinear hyperbolic partial differential equations, the relationship between \(x\) and \(y\) is complex. It is possible to approximate this relationship using a low degree
polynomial of the form
\[y = f(x)\beta + \epsilon, \]
(4.1)

where \(x = (x_1, x_2, ..., x_k)' \), \(f(x) \) is a vector function of \(p \) elements that consists of powers and cross products of powers of \(x_1, x_2, ..., x_k \) up to a given degree, \(\beta \) is a vector of \(p \) unknown constant coefficients, and \(\epsilon \) is a random experimental error with assumed mean error of zero. An important assumption of the methodology is that the variables are continuous.

We use a second degree model of the form
\[y = \beta_0 + x'\beta_* + x'Bx + \epsilon, \]
(4.2)

where \(x = (x_1, x_2, ..., x_k)' \), \(\beta_* = (\beta_1, \beta_2, ..., \beta_k)' \), and \(B \) is a symmetric matrix of order \(k \), whose \(i \)th diagonal element is \(\beta_{ii} \) \((i = 1, 2, ..., k)\) and its \((i, j)\)th off-diagonal element is \(\frac{1}{2}\beta_{ij} \) \((i, j = 1, 2, ..., k \ i \neq j)\). Initially a first order polynomial was considered however it did not adequately model experimental responses. The second-order polynomial model was found to provide a good compromise between accuracy and computational cost.

The benefit of such a model is that it allows us to establish an approximate relationship between input and output parameters. Additionally, it helps us to identify the optimum setting of \(x_1, x_2, ..., x_k \) that results in the desired output parameters, without running a large number of simulations (as would be needed in a Monte Carlo style approach; e.g. as used by Leguy et al. [2011]).

We created an experimental design based on a two-level fractional factorial of input parameters with centre points. This design samples from particular corner points of a hypercube for combinations of input parameters. This sampling strat-
egy has the advantage of requiring fewer iterations compared with a full factorial
design (which would require, for an input vector of size m, 2^m runs).

A series of experiments were conducted to measure the response y for given x
parameters. The goal is to find the boundary over the input parameters resulting
in jointly admissible output parameters. The multidimensional space of input
parameters is too large to perform a fine grid search over in order to find ranges
for jointly admissible output values. Therefore, it is necessary to refine the choice
of input parameters To simplify the possible input variables we clustered the 120-
artery 1-D model into muscular and elastic arteries, as described in Chapter 3.
We varied eight independent parameters of the 1-D model. These are the diam-
eter of the muscular (MD) and elastic (ED) arteries; the heart rate (HR) and
stroke volume (SV), which were varied by scaling the prescribed flow waveform
at the aortic root; the arterial stiffness at the muscular (MS) and elastic (ES)
arteries, which were varied according to the apparent pulse wave velocity (PWV).
The muscular arteries consisted of the main aorta and the iliac bifurcation (see
highlighted arteries in Fig. 5.1). Additionally, the total peripheral resistance (R)
and outflow pressure (P_{out}) were changed. The compliance of the peripheral cir-
culation and the length of the arteries were not changed, since it has been shown
that these parameters do not significantly change the pressure and flow waveforms
[Leguy et al., 2011; Willemet et al., 2013]. Initially, a coarse grid of variables was
considered to explore the region of maximum response to identify a given disease
set of output parameters.

We consider the following nine cardiovascular indices (output parameters):
carotid-femoral PWV, carotid-radial PWV, carotid-brachial PWV, carotid-ankle
PWV, systolic pressure, diastolic pressure, mean pressure, diastolic aortic diame-
ter, and systolic aortic diameter, as well as several indices derived from the PPG waveform. The units of each input parameter differ from one another hence they were transformed into coded variables. The mid value is defined as 1 and a low and high value correspond to −1 and +1, respectively. This method gives each predictor an equal share in determining the dominant predictor in the response surface. Initial low and high input parameters are shown in Table 4.1.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>low</th>
<th>mid</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscular Artery Diameter</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Elastic Artery Diameter</td>
<td>0.7</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Heart Rate</td>
<td>0.705</td>
<td>1</td>
<td>1.295</td>
</tr>
<tr>
<td>Stroke Volume</td>
<td>0.6</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Muscular Artery Stiffness</td>
<td>0.7</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Elastic Artery Stiffness</td>
<td>0.78</td>
<td>1</td>
<td>1.22</td>
</tr>
<tr>
<td>Total Peripheral Resistance</td>
<td>0.8</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Outflow Pressure</td>
<td>0.778</td>
<td>1</td>
<td>1.222</td>
</tr>
</tbody>
</table>

Table 4.1: Initial low, mid and high input parameters for experimental design.

The results of this grid search were used to define a range of input parameters with admissible outputs (i.e. outputs that are within a physiologically range). From this admissible range of input values several iterations of further simulations were performed sampling within the range. For this sub-sampling an estimate of the mean and variance of a Multivariate Normal (MVN) distribution was calculated from the admissible input range. MVN is a vector composed of elements that are each normally distributed. From the MVN distribution admissible sample input
points were drawn. Dr Erhardt designed an iterative process that repeatedly re-centered and reoriented (via covariance matrix) until sampling from a distribution centered in the applicable location and wide enough to cover the entire admissible range. This took a total of three iterations.

Statistical analysis was performed using a two-tail unpaired Student’s t test with a significant difference being at the level of less than 0.05, 0.01 and 0.001.

4.1.2 Random Forest Classification

From the data set simulated in Section 4.1.1, we apply a classification framework to differentiate between normotensive, diabetic, hypertensive, and combined hypertensive and diabetic disease states. We used a random forest classification (RFC) tool which is an algorithm based on an ensemble of many classification trees [Breiman, 2001]. Each decision tree contains a subset of variables randomly selected from the original set. Classification predictions are made by the combined outcomes of the fully grown trees. This technique has the benefit of not over-fitting the data, and runs efficiently on large databases whilst allowing us to explore the relationship between the input variables. This type of classification has been used in predicting disease risk [Khalilia et al., 2011] and guiding public health policy [Cushman et al., 2010].

To model the relationship between the eight input variables and the nine output parameters, we implemented the ‘randomForest’ package [Liaw & Wiener, 2002] within the R environment [R Development Core Team, 2014]. From the original data set (i.e. the 120-artery 1-D model), 2,000 random tree samples were generated, with 3 variables considered at each split.
4.1.3 Search Strategy

Studies published up to September 2015 were searched manually in PubMed. Key words for the search were ‘hypertension’ and ‘diabetes’ and ‘blood pressure’ and ‘PWV’.

The list of titles and abstracts was initially screened for relevancy. Articles were then excluded if they: (1) did not explicitly exclude or not provide information on whether diabetics were excluded from hypertensive cohorts, or hypertensive from diabetic cohorts; (2) included children or adolescents; (3) were animal studies; (4) were studies testing pharmacological agents; (5) were in languages other than English; (6) were in vitro or model-based studies; or (7) were review articles. Relevant articles were then checked in full to confirm eligibility and extract data.

Data extraction was standardized by use of a single form, which included publication date and author, sample size method of cfPWV measurement, blood pressure, variables relative to numerical models (either as input or output variables). These are summarised in Table 4.1. Not every study explicitly stated the distribution of participants between Type 1 and Type 2 diabetes; these are indicated by the symbol ‘?’ in the ‘Diabetes Status’ column.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Diabetes Status</th>
<th>Sample n</th>
<th>Men %</th>
<th>Age</th>
<th>Measured Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersen et al. [2003]</td>
<td>20-DM1, 25-DM2</td>
<td>45</td>
<td>45</td>
<td>69</td>
<td>53</td>
</tr>
<tr>
<td>Belli et al. [2001]</td>
<td>?</td>
<td>1025</td>
<td>642</td>
<td>39</td>
<td>30</td>
</tr>
<tr>
<td>Bruno et al. [2012]</td>
<td>DM2</td>
<td>82</td>
<td>175</td>
<td>84</td>
<td>57</td>
</tr>
<tr>
<td>Even et al. [2004]</td>
<td>DM2</td>
<td>27</td>
<td>24</td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>Fegan et al. [2003]</td>
<td>DM2</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>Fegan et al. [2003]</td>
<td>DM2</td>
<td>19</td>
<td>19</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>Gamella-Pomelo et al. [2015]</td>
<td>DM2</td>
<td>82</td>
<td>93</td>
<td>209</td>
<td>56</td>
</tr>
<tr>
<td>Guanarelli et al. [2012]</td>
<td>DM2</td>
<td>45</td>
<td>48</td>
<td>90</td>
<td>58</td>
</tr>
<tr>
<td>Häidebrandt et al. [2005]</td>
<td>DM2</td>
<td>-</td>
<td>749</td>
<td>165</td>
<td>58</td>
</tr>
<tr>
<td>Isnard et al. [1999]</td>
<td>-</td>
<td>15</td>
<td>16</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>Kalkorni et al. [2014]</td>
<td>DM2</td>
<td>30</td>
<td>28</td>
<td>31</td>
<td>55</td>
</tr>
<tr>
<td>Lacy et al. [2004a]</td>
<td>25-DM1, 41-DM2</td>
<td>66</td>
<td>66</td>
<td>64</td>
<td>55</td>
</tr>
<tr>
<td>Megoni et al. [1992]</td>
<td>DM2</td>
<td>11</td>
<td>9</td>
<td>100</td>
<td>43</td>
</tr>
<tr>
<td>Mitchell et al. [2003]</td>
<td>-</td>
<td>19</td>
<td>60</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Mitchell et al. [2003]</td>
<td>-</td>
<td>11</td>
<td>50</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Paini et al. [2006]</td>
<td>DM2</td>
<td>94</td>
<td>243</td>
<td>126</td>
<td>74</td>
</tr>
<tr>
<td>Ravikumar et al. [2002]</td>
<td>?</td>
<td>50</td>
<td>35</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>Tedesco et al. [2006]</td>
<td>DM2</td>
<td>35</td>
<td>50</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>Triantafyllou et al. [2014]</td>
<td>-</td>
<td>86</td>
<td>38</td>
<td>54</td>
<td>43</td>
</tr>
<tr>
<td>Wang et al. [2013]</td>
<td>?</td>
<td>39</td>
<td>107</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Wilkinson et al. [2000]</td>
<td>DM1</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Zhang et al. [2011]</td>
<td>DM2</td>
<td>79</td>
<td>79</td>
<td>-</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 4.2: SBP, systolic blood pressure; DSP, diastolic blood pressure; PP, pulse pressure; MAP, mean arterial pressure; HR, heart rate; PWV (c-f), pulse wave velocity carotid to femoral; PWV (b-a), pulse wave velocity brachial to ankle; PWV (c-r), pulse wave velocity carotid to radial; PWV (c-b), pulse wave velocity carotid to brachial; EJT, ejection time; CSP, central systolic blood pressure; CPP, central pulse pressure; ASD, aortic systolic diameter; ADD, aortic diastolic diameter; PDC, aortic pulsatile diameter change; AADD, aortic arch diastolic diameter; AASD, aortic arch systolic diameter; CarPP, carotid pulse pressure; Cap, capillary pressure; TAC, total arterial compliance; Aix, augmentation index at the Dis, distensibility;
4.2 Results

4.2.1 Factorial Design and RSM Analysis

Relevant input variables for the simulations presented in this chapter were derived using the response surface methodology and random forest classification described in Sections 4.1.1 and 4.1.2, respectively. This experimental procedure was designed and conducted by the collaborating group, Medici Tech Inc, USA; thus only the subsequent results of the statistical design are presented in this chapter.

4.2.2 Fictive Population Simulations – Global Haemodynamic Biomarkers

Figures 4.1 and 4.2 present the measured PWV carotid-femoral, PWV carotid-radial, PWV carotid-brachial, PWV carotid-ankle, systolic pressure, diastolic pressure, mean pressure, diastolic diameter, and systolic diameter of the simulated database for the baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups.

For the fictive baseline, diabetic, diabetic and hypertensive, and hypertensive subgroups no statistically significant difference was identified between the subgroups for the PWV carotid-femoral parameter. For all the subgroups, the maximum measured PWV was 9.8 m s\(^{-1}\) and the minimum 3.7 m s\(^{-1}\). The lack of distinct differentiation between the diseased states does not match what is found in the literature: PWV carotid-femoral was elevated in patients with combined hypertensive and diabetic compared healthy controls [Kulkarni et al., 2014].

For the carotid-radial PWV, it is possible to differentiate the hypertensive
Figure 4.1: Boxplots of carotid-femoral, carotid-radial, carotid-brachial, and carotid-ankle PWV and systolic, diastolic, and mean pressure of the fictive population at baseline (B), diabetic (D), combined diabetic and hypertensive (DH), and hypertensive (H) conditions. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. A t-test value of less than 0.05, 0.01 and 0.001 are indicated by *, **, and ***, respectively.
Figure 4.2: Boxplots of aortic diastolic and systolic diameter of the fictive population at baseline (B), diabetic (D), combined diabetic and hypertensive (DH), and hypertensive (H) conditions. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers. A t-test value of less than 0.05, 0.01 and 0.001 are indicated by *, **, and ***, respectively.

subgroups from the baseline, diabetic, and the combined diabetic and hypertensive subgroup, with a t-test value <0.01. The median values of carotid-radial PWV for the baseline, diabetic, combined diabetic and hypertensive and hypertensive subgroups are 9.1, 9.1, 9.1 and 9.4 m s\(^{-1}\), respectively. There were no outliers in any of the cohorts.

In Fig. 4.1 the baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups measured a median carotid-brachial PWV value of 12.1, 12.1, 12.1 and 12.4 m s\(^{-1}\), respectively. The minimum and maximum measured carotid-brachial PWV across all groups was 9.5 and 15.4 m s\(^{-1}\), respectively. There was a statistical significant difference between the hypertensive subgroup and all other groups (p value <0.01).

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups had a median carotid-ankle PWV of 7.6, 7.5, 7.7 and 8.1 m s\(^{-1}\), re-
spectively. The minimum and maximum PWV across all groups was 4.9 and 10.5 m s\(^{-1}\), respectively. There was a statistically significant difference between the hypertensive subgroup and the baseline and diabetic subgroups (p value < 0.01).

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups had a median systolic pressure of 17.6, 17.3, 17.9 and 20.4 kPa, respectively. The minimum and maximum systolic pressure was 12.6 and 27.1 kPa, respectively. The hypertensive cohort was statistically significantly different from the combined diabetic and hypertensive subgroups (p<0.01). Additionally, the hypertensive subgroup was statistically different from the diabetic and baseline subgroups (p<0.001).

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups had a median diastolic pressure of 9.4, 9.6, 10.0 and 10.3 kPa, respectively. The minimum and maximum diastolic pressure across the fictive population was 7.2 and 16 kPa, respectively. The hypertensive subgroup was statistically different from the baseline subgroup (p<0.01). The diabetic subgroup was significantly different from the combined diabetic and hypertensive subgroup (p<0.05).

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups had a median mean pressure of 12.3, 12.3, 12.7 and 13.4 kPa, respectively. The minimum and maximum mean pressure across the fictive population was 10.5 and 19.6 kPa, respectively. The hypertensive subgroup was significantly different from the baseline (p<0.001), diabetic (p<0.001) and combined diabetic and hypertensive (p<0.05) subgroups. Additionally, the diabetic subgroup was statistically different from the combined diabetic and hypertensive subgroup (p<0.05).

In Fig. 4.2 the baseline, diabetic, combined diabetic and hypertensive, and
hypertensive subgroups had a median diastolic diameter of 30.3, 30.7, 32.5 and 32.5 mm. Within the fictive population the diastolic diameter ranges from 24.7 to 41.6 mm. The combined diastolic and hypertensive subgroup was significantly different from the baseline and diabetic subgroups (p<0.05).

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups had a median diameter at systole of 32.6, 32.9, 33.4 and 33.4 mm, respectively. Within the fictive population the diastolic diameter ranges from 25.7 to 43.4 mm, respectively. The combined diastolic and hypertensive subgroup was significantly different from the baseline and diabetic subgroups (p<0.05).

4.2.3 Fictive Population Simulations – PPG Biomarkers

Figure 4.3 shows the PPG features (described in Section 3.2.1.3) of the virtual database of healthy patients (B) and patients with diabetes (D), diabetes and hypertension (DH), and hypertension (H). There is no statistical difference between the healthy and diseased patient groups for CT, PS, PD, With and Area.

The only statistically significant difference in subgroup datasets is found for the index dT: the time between the two peaks of the PPG waveform. The unpaired two-sample t-test analysis was used to determine whether the two sets of data are significantly different from each other. From our fictive population we are able to differentiate the hypertensive group from the diabetic and baseline subgroups, with a t-test value of 0.05 and 0.01, respectively. Compared to the hypertensive median value of 307 ms, the diabetic and hypertensive subgroups have a median value of 331 ms. In the literature dT is most often found in the form of the stiffness index, $SI = H/dT$, where H is the height of the patient.
Figure 4.3: Boxplots of dT, CT, PS, PD, Width and Area of the PPG signal measured in the fictive population at baseline (B), diabetic (D), combined diabetic and hypertensive (DH), and hypertensive (H) conditions. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. A t-test value of less than 0.05, 0.01 and 0.001 are indicated by *, **, and ***, respectively.
Eduardo & Gomes [2015] observed no statistically significant change in SI between patients with Type I diabetes and a control group. Boos et al. [2007] found a statistically significant increase of SI in patients with hypertension compared to a baseline group. Since dT and SI are inversely proportional, our results are in good agreement with the change found in the literature for a hypertensive cohort.

Notably, the mixed diabetic and hypertensive group is not statistically significantly different from any other of the diseased of healthy subgroups. No data could be found for dT or SI in the literature for a mixed hypertensive diabetic subgroup.

From the analysis of our fictive healthy and diseased population simulations we do not detect a statistically significant difference in the measured CT at the digital artery. The measured CT ranges from 98.0 to 253.9 ms. The baseline, diabetic, combined diabetic and hypertensive, and hypertensive subgroups had a median CT value of 132.2, 129.3, 135.3 and 133.6 ms, respectively.

The work of Liu et al. [2014] has found no statistical significant difference between CT of an aged matched diabetic and normal patient group. Jaryal et al. [2009] also found no correlation between diabetes and CT. However, they did not provide data on whether the patients were also hypertensive; thus no definitive conclusions can be drawn for the purpose of this analysis. A more recent study by Hubena et al. [2015] found, in aged matched patients, that CT was significantly higher in diabetic group compared to the control group. Dillon & Hertzman [1941] observed an increase in crest time in patients with hypertension from normal patients. However, it should be noted that the hypertensive cohort had an average age of 41 years, and the normal group an average age of 26 years. No study could be found analysing the crest time in patients with combined hypertension and
diabetes.

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive had a median PS value of 165.5, 161.0, 161.0 and 120.4 (10^{-8} m^2), respectively. No statistically significant difference was identified between the subgroups. Across all groups the minimum measured PS was 21.4 and the maximum 366.7 (10^{-8} m^2). An outlier was identified in the baseline and diabetic subgroups. Hubena et al. [2015] found a significantly higher values of PS in the diabetic group in comparison with the control group, at statistically significant level p < 0.05. This finding is not observed in our fictive population.

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive had a median PD value of 57.75, 55.8, 55.8 and 55.7 (10^{-8} m^2), respectively. No statistically significant difference was identified between the subgroups. Across all groups the minimum measured PD was 12.0 and the maximum 158.0 (10^{-8} m^2). An outlier was identified in each of the subgroups.

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive had a median Width value of 171.7, 175.0, 175.0 and 172.6 s, respectively. No statistically significant difference was identified between the subgroups. Across all groups the minimum measured Width was 133.0 s and the maximum 439.3 s. For the baseline, diabetes, combined diabetes and hypertension, and hypertensive subgroups there were 2, 3, 4, and 5 outliers, respectively. Arza et al. [2013] has observed a relationship between PPG Width and systolic and diastolic pressure, however there is no direct study correlating Width and disease state.

The baseline, diabetic, combined diabetic and hypertensive, and hypertensive had a median Area value of 42.1, 38.1, 41.3 and 37.8 (10^2 mm^2 s), respectively. No statistically significant difference was identified between the subgroups. Across all
groups the minimum measured Area was 7.7 (10^2 \text{ mm}^2 \text{ s}) and the maximum 109.0 (10^2 \text{ mm}^2 \text{ s}). For the baseline, diabetes, combined diabetes and hypertension, and hypertensive subgroups there were 2, 3, 4, and 5 outliers, respectively.

Usman et al. [2013] looked at the area under the curve of the PPG waveform in 101 diabetic patients of Type 2, aged 50 to 70 years old. The results of this work show that an increased level of HbA1c (a measure of plasma glucose over a prolonged period) was related to a decrease in area under the curve. The authors suggested that changes in arterial properties can be non-invasively detected by analysing pulse shape characteristics. However, without a control group to compare the results to, it is difficult to extrapolate whether a diabetic subgroup would be statistically different from a baseline or hypertensive subgroup.

4.3 Discussion and Concluding Remarks

The main aim of this chapter was twofold. First, we have presented a novel methodology to optimise the input parameters of the 120-artery 1-D model developed in Chapter 3 in order to match biomarkers that have been reported in the literature. Second, we have analysed these simulated data sets to determine if additional parameters taken from the PPG waveform could be used to classify diabetes versus hypertension subjects.

To our knowledge, this is the first time that the RSM has been applied to the field of 1-D blood flow modelling in the larger systemic arteries. Elements of experimental statistical design are needed due to the complex relation between input and output conditions of the 1-D numerical model. We have attempted to match the following output parameters of the 1-D model using RSM: carotid-
femoral PWV, carotid-radial PWV, carotid-brachial PWV, carotid-ankle PWV, systolic pressure, diastolic pressure, mean pressure, aortic diastolic diameter, and aortic systolic diameter. Our methodology requires us to generate a database of virtual arterial waveforms using a 1-D modelling in the 120 larger systemic arteries, including the vasculature of the hands and head. The outputs of the set of 200 virtual subjects were assessed against literature data. The choice of sample size was identified by Dr Erdhardt as being large enough to draw statistically applicable results, but small enough to feasibly run several iterations within the given time. The simulation models built in this study are generic to each disease state, and do not attempt to match patient-specific data, but rather we followed a disease-centered approach.

Using our virtual population, we have assessed the cross-sectional area morphology by analysing 6 measurable parameters. We analysed our fictive population of healthy and diseased simulations to assess whether additional parameters extracted from the PPG waveform could be used in the identification and classification of disease. Our results suggest that the dT (the time between the two peaks of the PPG waveform) could be useful for this purpose. This observation is supported by in vivo trials from the literature that have shown that dT is related to aortic PWV [Millasseau et al., 2002a].

While we varied elastic and muscular artery parameters across a range, we did not enforce a relation between their variations. Greenwald et al. [1990] found the reflection coefficient at the aorta-iliac bifurcation ranged from +0.3 in early life to −0.3 in old age. In the work of Willemet et al. [2015] numerical simulations with an aorta-iliac reflection coefficient outside of a physiological range were excluded from the dataset. The reflection coefficient for all simulations fell within
the physiological range for our data set.

Chapter 2 analyses the sensitivity to changes in the morphology of the flow profile (whilst the mean flow is preserved) to PPG parameters, showing that subtle changes of the shape of the flow profile result in significant changes in the morphology of the PPG waveform. Liu et al. [2001] presents the cardiovascular abnormalities associated with diabetes, combined diabetes and hypertension, and hypertension in a sample of middle-aged and older adults. Diabetes is associated with abnormal left ventricular relaxation and combined diabetes and hypertension with more severe abnormal left ventricular relaxation.

It is noted that the same healthy flow profile is imposed as the inflow boundary condition for simulating all disease states, but its time period and absolute value are scaled to match literature data. This simplification was one such limitation of our study and was necessary due to generalised disease specific continuous measurements of inflow.

The literature search study within this chapter was conducted using publicly available datasets. One such limitation is citation bias, where researchers may have not published null results, which may have found diabetes and hypertension to have no bearing on haemodynamic parameters. This unknown could have the effect of increasing the significance or disease state on certain haemodynamic parameters. Additionally, each study will be limited by varying degrees of information bias, including errors in study design, patient recruitment, device error, and differing device models. This statistical noise may hinder predictive performance developed within this work.

From our analysis, further work needs to be conducted to classify disease state from PPG measurement alone. The optimal classification model would combine
traditional parameters such as pressure or PWV with parameters extracted from the PPG waveform.
Chapter 5

Reducing the Number of Parameters in 1-D Arterial Blood Flow Modelling

Within Chapters 3 and 4 we have studied how input parameters influence the simulated pressure and flow waveforms using the 1-D/0-D model. Up until now we have lumped the input parameters into two subsets, muscular and elastic arteries. This has the benefit of drastically reducing the complexity of the problem. In this Chapter we approach the problem from a different perspective. We consider what would happen if we were to alter the geometry of the initial problem. The work of Alastruey et al. [2006, 2007] has looked at how anatomical variations influence local pressure and flow changes. We present a novel methodology to look at how the number of arterial segments included into a model affect the simulated pressure and flow waveform. By reducing the number of input segments we are able to decrease the overall number of input parameters of the model. Since it is not
always possible to personalise every input parameter of an haemodynamic model to a patient, we look to maximise the proportion of patient-specific parameters to literature or estimated parameters.

Patient-specific modelling has the potential to revolutionise how disease is treated in the clinical setting. Already it has been used to expand our understanding of the underlying pathophysiology of aortic rupture [Doyle et al., 2009], cerebral aneurysm [Cebral et al., 2009; Tezduyar et al., 2008], and atherosclerosis in the carotid [Milner et al., 1998]. Patient-specific modelling has also been used to guide surgical planning [De Zelicourt et al., 2011; Marsden et al., 2009; Taylor et al., 1999; Wilson et al., 2005] and to provide cardiovascular biomarkers of cerebrovascular resistance [Olufsen & Nadim, 2004; Pope et al., 2009]. However there are limitations to this technique due to factors such as operator uncertainty [Glor et al., 2004a,b, 2005] and modelling assumptions [Lee et al., 2008; Moyle et al., 2006]. How best to parameterise a blood flow model remains challenging. One such approach is to perform a sensitivity analysis to find out which parameters are most vital to be personalised [Cebral et al., 2005a; Huberts et al., 2013; Leguy et al., 2011].

Persistently elevated blood pressure (hypertension) is now identified as the most important single cause of mortality worldwide. By 2025 it is predicted that 1.56 billion people will have hypertension [Kearney et al., 2005]. The correlation between hypertension and independent biomarkers has been extensively analysed [Laurent et al., 2001; Wang et al., 2007]. However, understanding how properties of the cardiovascular system affect the aortic blood pressure waveform and its relation to the pressure waveform in the upper limb (where blood pressure is routinely measured) has not yet been fully understood [Kakar & Lip, 2006]. One-dimensional
arterial blood flow modelling has the potential to improve this understanding of human haemodynamics.

Several studies have shown the ability of the nonlinear 1-D equations of blood flow in compliant vessels to capture the main features of pressure and flow waves in the aorta and other large arteries [Leguy et al., 2010; Mynard & Nithiarasu, 2008; Olufsen, 1999; Reymond et al., 2009; Willemet et al., 2013]. However, a major drawback of 1-D modelling is that the determination of model input parameters from clinical data is a very challenging inverse problem [Quick et al., 2001, 2006]. In the 1-D formulation, the arterial network is decomposed into arterial segments characterised by geometrical and structural properties. The larger the number of arterial segments in a given 1-D model, the greater the number of model input parameters that need to be estimated. Thus, a method of minimising the number of 1-D model arterial segments should help to maximise the percentage of input parameters that can be estimated from clinical measurements and, hence, that can be patient specific.

Patient-specific 1-D [Marchandise et al., 2009; Steele et al., 2003] and 3-D models [Ku et al., 2002; Wilson et al., 2005] have proven useful in predicting haemodynamic responses to medical interventions. Additionally, patient-specific modelling of haemodynamics requires extensive data to construct a personalised geometric model generated from MRI [Long et al., 2000], or computed tomography [Antiga et al., 2003] data. Patient-specific models also are beneficial in estimating parameters that cannot be measured in vivo [Cebral et al., 2005b].

Within the field of multi-branched 1-D modelling, there has yet to be a consensus reached in terms of the optimum number of arterial segments necessary to obtain good quality pressure and flow measurements at the aorta. The number of
arterial segments used in 1-D modelling has increased in recent years from 55 to 4 million [Avolio, 1980; Blanco et al., 2014; Mynard & Nithiarasu, 2008; Perdikaris et al., 2014; Reymond et al., 2009; Stergiopulos et al., 1992]. Obviously, with an increasing number of arterial segments the more challenging it becomes to estimate a greater percentage of the total number of input parameters from available patient-specific data. Running a distributed 1-D model requires geometric and material properties for each arterial segment, a prescribed input blood volume flow waveform, and outflow boundary conditions for every terminal vessel. Thus, with each generation of bifurcations in the arterial tree the number of input parameters that need to be prescribed increases exponentially.

Lumped parameter models of the cardiovascular system are also commonly used to simulate arterial blood flow. They were introduced by Frank [1899] under the guise of a ‘hydraulic Windkessel’, which consists of a resistor and capacitor in series. The Windkessel model is adept at portraying the exponential decay in diastole, but it is less able to describe the pressure waveform during the systolic phase of the cardiac cycle [Segers et al., 2008]. More elaborate combinations of resistors, capacitors and impedances have been suggested to improve fitting in systole [Kind et al., 2010; Olufsen & Nadim, 2004; Stergiopulos et al., 1999]. However, with the drop in the spatial dimension, the Windkessel model neither accounts for wave propagation and reflection, nor can it simulate the effect of pulse wave velocity (PWV), which is assumed to be infinite. Wave reflections play an important role in shaping the pressure waveform and central PWV has been identified as a highly valuable marker of arterial stiffness, which is being used in the classification and diagnosis of hypertension [Mancia & The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the
Figure 5.1: (c) Schematic representation of the 55-artery 1-D model (black). The circled region shows additional anatomical model of the hand included in the 67-artery model (grey), containing the superficial palmar arch and digital arteries. (a) Flow waveform prescribed at the aortic root as a reflective boundary condition (black), and simulated flow waveform at the digital artery (grey) for the 67-artery model. (b) Simulated pressure waveforms at the aortic root (black) and digital artery (grey) for the 67-artery model. (d) Flow waveform prescribed at the aortic root as a reflective boundary condition (black), and simulated flow waveform at the thoracic aorta (grey) for the 55-artery model. (e) Simulated pressure waveforms for the 55-artery model at the aortic root (black) and thoracic aorta (grey).

European Society of Cardiology (ESC), 2013]. Wave propagation and reflection can be studied using 1-D modelling [Willemet & Alastruey, 2014].

The aim of this study is to provide a new methodology for investigating the minimum number of tapered arterial segments required to simulate, using non-linear 1-D modelling, the blood pressure and flow waveforms in the aorta and digital artery in the hand, where the upper limb pressure waveform is usually measured non-invasively. This is achieved by lumping peripheral 1-D model branches into Windkessel models that preserve the net resistance and total compliance of the original model. In addition, this methodology enables the analysis of the effect
of network topology and, hence, reflection sites on the shape of pressure and flow waves. Since the initial conditions of the problem will affect the results of any segment-reducing methodology, it is important to consider multiple initial conditions to the problem. Thus, our novel methodology is tested for the aorta of a 55-artery model under both normotensive and hypertensive conditions and for the digital artery of a 67-artery model under normotensive conditions (Fig. 5.1).

Section 5.1 describes the methodology to reduce the number of parameters in 1-D arterial blood flow modelling. In Section 5.2 the results of our novel methodology applied to different initial conditions area presented. Finally, Section 5.3 summarises and discusses results and observations.

5.1 Methods

We begin by describing the 55 and 67-artery models considered in this study (Sections 5.1.1 and 5.1.2). We then introduce our novel technique for lumping peripheral 1-D model branches into Windkessel models (Section 5.1.3). Lastly, we describe the error metrics used to analyse our results (Section 5.1.4).

5.1.1 55-artery model

The baseline 1-D arterial network considered in this work consists of the larger 55 arteries (Fig. 5.1c, black) with the properties of a normotensive human.

Until now in this thesis the geometry considered was a 120-vessel problem, which included the vasculature of the hand and head. One limitation of the methodology described in this chapter is that it cannot be applied to arterial loops; i.e. it cannot be applied to two vessels merging downstream from the heart.
and hand. Thus why we consider an arterial geometry that excludes the vasculature of the head, which has a complex network of merging arteries. Additionally, unlike previous chapters, we consider a geometry of the hand that excludes a superficial palmar arch and deep palmar arch artery so that there are no arterial loops. Thus, we consider a 55 and a 67-artery model. The lengths of the arteries were not changed since previous studies have shown that this parameter does not change the pressure and flow waveforms significantly [Leguy et al., 2011; Willemet et al., 2013].

Figure 5.1d,e shows the flow and pressure waveforms at the aortic root and thoracic aorta of the 55-artery baseline model. We also considered a hypertensive model obtained by increasing arterial stiffness in all vessels of the baseline model and peripheral resistances in all Windkessel models. Both PWV and the total peripheral resistance in each terminal Windkessel ($R_1 + R_2$) are increased by a factor of 1.5.

5.1.2 67-artery model

We extended the baseline model by including the larger arteries of the hand using previously published data [Alastruey et al., 2006, Table A1] (see Fig. 5.1c). Each hand consists of the superficial palmar arch and four digital arteries attached to the ulnar and radial arteries of the baseline model. Figure 5.1a,b shows the flow and pressure waveforms at the aortic root and digital artery of the 67-artery model. Pressure and flow in all four digital arteries are almost identical.
5.1.3 Reducing the number of arterial segments

The baseline model consists of the aorta and 5 generations of arterial bifurcations (Fig. 5.1c). We reduced the 55 arterial segments of this model using two procedures. In the first one, each successive reduction in the number of segments was achieved by decreasing the number of generations of bifurcations. For example, by eliminating the 5th generation of bifurcations, the arterial network is reduced to 53 arteries, since the right interosseous and right lower ulnar arteries (the only vessels at the 5th generation of bifurcations) are lumped into a single three-element Windkessel model coupled to the end point of the right upper ulnar.

In the second procedure, the number of arteries of the model containing the aorta up to the first generation of bifurcations was reduced by successively lumping each pair of the most peripheral vessels into a three-element Windkessel model (see Section 5.1.3.1). For example, the model up to the first generation of bifurcations (with 21 vessels) was reduced to 19 vessels by combining the left and right common iliac arteries into a three-element Windkessel model coupled to the lower abdominal aorta.

The 67-artery model (Fig. 5.1c, grey) was reduced to a model consisting of only the arterial segments of the upper right limb and ascending aorta, which is similar to the model of Karamanoglu et al. [1994]. Similarly to the 55-artery model, we reduced the number of arteries by first successively decreasing the number of generations of bifurcations and then systematically reducing the number of aortic segments. Thus, the 67-artery model was reduced up to the 19-artery model shown in Fig. 5.2f. This reduction enables the evaluation of a peripheral measuring site throughout the systematic reduction of arteries. The
maximum reduction of the 55-artery network gives a network of 1 artery (Fig. 5.3f).

5.1.3.1 Reducing a 1-D model terminal branch into an equivalent 0-D model

We describe our novel methodology to lump a single nonlinear 1-D model vessel of length \(l \) coupled with a linear three-element Windkessel model at the outlet (Fig. 5.4a) into a linear two-element Windkessel model (Fig. 5.4c). The vessel has a pressure and flow \(p_{\text{in}}(t) \) and \(q_{\text{in}}(t) \) at the inlet, and \(p_{\text{out}}(t) \) and \(q_{\text{out}}(t) \) at the outlet. The outlet forms the inlet boundary conditions of the Windkessel model, which has an outlet flow \(\widetilde{q}_{\text{out}}(t) \) and constant pressure \(\widetilde{p}_{\text{out}} \).

In previous derivations of the linear 0-D formulation from the nonlinear 1-D equations, it was assumed constant cross-sectional area and material properties along the length of the arterial segment or an average cross-sectional area [Alastruey et al., 2008; Milišić & Quarteroni, 2004; Olufsen & Nadim, 2004]. In the following analysis we will not make such an assumption and will allow area and material properties to vary with the position along the vessel.

We consider the following linearised version of the 1-D equations [Alastruey et al., 2012a],

\[
\frac{A_d}{\rho c_d^2} \frac{\partial q}{\partial t} + \frac{\partial q}{\partial x} = 0, \quad (5.1a)
\]

\[
\frac{\partial q}{\partial t} + \frac{A_d}{\rho} \frac{\partial p}{\partial x} = \frac{-2(\xi + 2)\pi \mu q}{\rho A_d}, \quad (5.1b)
\]

where we have used \(Q = UA \) and linearised about the diastolic conditions, \((A, P, Q) = (A_d+a, P_d+p, q)\), where \(a(x, t), p(x, t) \) and \(q(x, t) \) are the perturbation variables for area, pressure and flow rate. The physiological conditions in the arterial system are only weakly nonlinear, thus many characteristics can be captured by the linearised
<table>
<thead>
<tr>
<th>Segment Number</th>
<th>Arterial Network</th>
<th>Aortic Root P (kPa)</th>
<th>Digital Artery P (kPa)</th>
<th>Digital Artery Q (ml/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.2: Pressure (P) and flow (Q) waveforms at the aortic root and midpoint of the digital artery of the 67-artery model (solid grey) and several reduced models (dashed black), one for each row. The number of segments and the arterial topology for each reduced model are given in the first two columns. Average (avg), systolic (sys) and diastolic (dias) relative errors are indicated in the top right corner of each plot.
Table 5.3: Pressure (P) and flow (Q) waveforms at the aortic root and midpoint of the thoracic aorta of the normotensive 55-artery model (solid grey) and several reduced models (dashed black), one for each row. The number of segments and the arterial topology for each reduced model are given in the first two columns. The aortic-root pressure waveform calculated by a two-element Windkessel model of the whole systemic circulation is shown in (f). Average (avg), systolic (sys) and diastolic (dias) relative errors are indicated in the top right corner of each plot.

Figure 5.3: Pressure (P) and flow (Q) waveforms at the aortic root and midpoint of the thoracic aorta of the normotensive 55-artery model (solid grey) and several reduced models (dashed black), one for each row. The number of segments and the arterial topology for each reduced model are given in the first two columns. The aortic-root pressure waveform calculated by a two-element Windkessel model of the whole systemic circulation is shown in (f). Average (avg), systolic (sys) and diastolic (dias) relative errors are indicated in the top right corner of each plot.
system [Dick et al., 1968]. To continue we introduce the following theorem:

Theorem 1. Mean Value Theorem (MVT): Suppose $f : [b_1, b_2] \to \mathbb{R}$ is continuous and suppose $g \geq 0$ is bounded and continuous on $[b_1, b_2]$, then there is $\zeta \in [b_1, b_2]$ such that

$$\int_{b_1}^{b_2} f(x)g(x)dx = f(\zeta) \int_{b_1}^{b_2} g(x)dx,$$

and

$$f(\zeta) = \frac{\int_{b_1}^{b_2} f(x)g(x)dx}{\int_{b_1}^{b_2} g(x)dx}. \quad (5.3)$$

Integrating the linearised 1-D Eqs. (5.1a) and (5.1b) along the x-axis yields

\begin{align*}
\int_0^l & \left(\frac{A_d \partial p}{\rho c_d^2 \partial t} + \frac{\partial q}{\partial x} \right) \, dx = 0, \quad (5.4a) \\
\int_0^l & \left(\frac{1}{A_d} \frac{\partial q}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial x} \right) \, dx = -\int_0^l \frac{2(\xi + 2)\pi \mu q}{\rho A_d^2} \, dx, \quad (5.4b)
\end{align*}

where we have divided the last equation by $A_d(x)$. We first evaluate both terms of Eq. (5.4a):

(a) $\int_0^l \frac{A_d \partial p}{\rho c_d^2 \partial t} \, dx = \frac{1}{\rho} \frac{\partial p(\zeta_1, \xi)}{\partial t} \int_0^l \frac{A_d}{c_d^2} \, dx$,

(b) $\int_0^l \frac{\partial q}{\partial x} \, dx = q_{\text{out}} - q_{\text{in}}$, with $q_{\text{out}} = q(l, t)$ and $q_{\text{in}} = q(0, t)$.

Since $p(x, t)$ is continuous and $\frac{A_d}{c_d}$ is bounded and continuous, with $A_d(x) > 0$ and $c_d(x) > 0$ under physiological conditions, we applied the MVT to (a), with $\zeta_1 \in [0, l]$.

We now evaluate each term of Eq. (5.4b):

136
(c) \(\int_0^l \frac{1}{A_d} \frac{\partial q}{\partial t} dx = \frac{dq(\zeta_2, t)}{dt} \int_0^l \frac{1}{A_d} dx; \)

(d) \(\frac{1}{\rho} \int_0^l \frac{\partial p}{\partial x} dx = \frac{p_{out} - p_{in}}{\rho}, \) with \(p_{out} = p(l, t) \) and \(p_{in} = p(0, t); \)

(e) \(-\frac{2(\xi+2)\pi\mu}{\rho} \int_0^l \frac{q}{A_d^2} dx = -\frac{2(\xi+2)\pi\mu}{\rho} q(\zeta_3, t) \int_0^l \frac{1}{A_d^2} dx. \)

Since \(q(x, t) \) and \(\frac{\partial q(x, t)}{\partial t} \) are continuous and \(\frac{1}{A_d} \) and \(\frac{1}{A_d^2} \) are bounded and continuous with \(A_d(x) > 0 \) under physiological conditions, we can apply the MVT to (c) and (e) with \(\zeta_2 \) and \(\zeta_3 \in [0, l] \) [Milišić & Quarteroni, 2004].

Remark 1. Pulse waves propagate rapidly within the cardiovascular system (with velocities of about 4-12 m s\(^{-1}\)), while arterial lengths can vary between few millimeters up to about 10 cm. As a result, pulse wave transit times within a vessel are small compared to the duration of the cardiac cycle. Thus at any given time the space averaged values will be close to the pointwise ones and \(p(\zeta_1, t) = p_{in}(t), \)
\(q(\zeta_2, t) = q_{out} \) and \(q(\zeta_3, t) = q_{out} \) are reasonable [Milišić & Quarteroni, 2004].

Equations (5.4a) and (5.4b) become

\[
\begin{align*}
K_1 \frac{dp_{in}}{dt} + q_{out} - q_{in} &= 0, \\
K_2 \frac{dq_{out}}{dt} + \frac{p_{out} - p_{in}}{\rho} &= -\frac{2(\xi+2)\pi\mu}{\rho} K_3 q_{out},
\end{align*}
\]

with

\[
K_1 = \int_0^l \frac{A_d}{c_d^2} dx, \quad K_2 = \int_0^l \frac{1}{A_d} dx, \quad K_3 = \int_0^l \frac{1}{A_d^2} dx.
\]

The term \(C_v = \frac{K_1}{\rho} \) is the integrated arterial compliance of the 1-D model vessel (Fig. 5.4b). We assume that the fluid inertia term \(K_2 \frac{dq_{out}}{dt} \) (Eq. (5.5b)) is negligible,
since peripheral inertias have a minor effect on flow waveforms [Alastruey et al., 2008]. Thus Eqs. (5.5a) and (5.5b) become

\[C_v \frac{dp_{in}}{dt} + q_{out} - q_{in} = 0, \]
(5.7a)

\[p_{out} - p_{in} = -R_v q_{out}, \]
(5.7b)

with

\[R_v = 2(\xi + 2)\pi \mu K_3, \]
(5.8)

where \(R_v \) is the integrated resistance of the 1-D model vessel (Fig. 5.4b).

We have shown that a 1-D arterial segment can be reduced to a two-element Windkessel model with resistance \(R_v \) and compliance \(C_v \). To close the problem we must also consider the following equation for the three-element Windkessel model prescribed at the boundary (Fig. 5.4a),

\[\left(1 + \frac{R_1}{R_2} \right) q_{out} + CR_1 \frac{dq_{out}}{dt} = C \frac{dp_{out}}{dt} + \frac{p_{out} - \hat{p}_{out}}{R_2}, \]
(5.9)

where output values of pressure and flow from the Windkessel model are denoted as \(\hat{p}_{out} \) and \(\hat{q}_{out}(t) \), respectively. By substituting \(q_{out}(t) \) from Eq. (5.7a) and \(p_{out}(t) \) from Eq. (5.7b) into Eq. (5.9) we obtain

\[\left(1 + \frac{R_1}{R_2} + \frac{R_v}{R_2} \right) q_{in} - \frac{p_{in} - \hat{p}_{out}}{R_2} - \left(C_v \left(1 + \frac{R_1}{R_2} \right) + C + \frac{R_v C_v}{R_2} \right) \frac{dp_{in}}{dt} \]

\[+ \frac{d(q_{in} - C_v \frac{dp_{in}}{dt})}{dt} (CR_1 + CR_v) = 0. \]
(5.10)

We make the assumption that the last term in Eq. (5.10) is of negligible size
compared to the other terms. This is deemed reasonable since

\[
\frac{d(q_{in} - C_v \frac{dp_{in}}{dt})}{dt} = \frac{dq_{out}}{dt},
\]

(5.11)

according to Eq. (5.5a) and consistent with our previous assumption of the inertia term \(K_2 \frac{dq_{out}}{dt}\) being negligible in physiological situations [Formaggia et al., 2003].

Each arterial segment acts as a buffer, due to its compliance, hence the rate of change of flow at the outlet \(\frac{dq_{out}}{dt}\) is small compared to the other terms in Eq. (5.10).

Rearranging Eq. (5.10) we get

\[
q_{in} = \frac{p_{in} - p_{out}}{R_2 + R_1 + R_v} + \frac{1}{(R_2 + R_1 + R_v)} (C_v R_2 + C_v R_1 + CR_2 + R_v C_v) \frac{dp_{in}}{dt}.
\]

(5.12)

By comparing Eq. (5.12) to the two-element Windkessel equation [Frank, 1899; Westerhof et al., 2009] we obtain

\[
q_{in} = \frac{p_{in} - \tilde{p}_{out}}{R_{new}} + C_{new} \frac{dp_{in}}{dt},
\]

(5.13)

where \(\tilde{p}_{out}\) is the value of pressure at which the outflow stops (most often approximated by the mean venous pressure), and Eqs. (5.14a) and (5.14b) for \(R_{new}\) and \(C_{new}\). These denote the resistance and compliance of the two-element Windkessel (Fig. 5.4c) that describes blood flow in the original 1-D model vessel coupled to a three-element Windkessel (Fig. 5.4a).
Figure 5.4: (left) Reduction of a nonlinear 1-D model single vessel attached to a three-element Windkessel model (R_1-C-R_2) (a) into a single two-element Windkessel model (R_{new}-C_{new}) (c), via an intermediary stage (b) in which the 1-D vessel is simplified into a two-element Windkessel model (R_v-C_v). The 1-D vessel is characterised by a length l, a cross-sectional area $A(x)$, and a pulse wave velocity $c(x)$. (right) Reduction of a nonlinear 1-D model single bifurcation coupled to three-element Windkessel models (R_1-C-R_2) (d) into a nonlinear 1-D model single vessel coupled to a three-element Windkessel model ($R_{\text{new,1}}$-$C_{\text{new,1}}$-$R_{\text{new,2}}$) (f). In the intermediary stage (e), the daughter vessels 1 and 2 and their outlet Windkessel model are transformed into two two-element Windkessel models (C_T-R_T).

$q_{\text{in}}(t)$: inflow; $q_{\text{out}}(t)$: outflow; $p_{\text{in}}(t)$: inflow pressure; p_{out}: outflow pressure.

These are calculated as

$$R_{\text{new}} = R_2 + R_1 + R_v$$

$$C_{\text{new}} = \frac{C_v R_2 + C_v R_1 + CR_2 + R_v C_v}{R_2 + R_1 + R_v},$$

where R_v and C_v are, respectively, the resistance and compliance of the 1-D model vessel (Fig. 5.4b).
5.1.3.2 Reducing a 1-D model single bifurcation into an equivalent 0-D model

We consider an arterial bifurcation with the parent vessel denoted by the index 0 and the daughter vessels by the indices 1 and 2 (Fig. 5.4d). Firstly, we apply the methodology described in Section 5.1.3.1 to transform each daughter vessel into two parallel RC-Windkessel models, with elements \(R_{1,T}, C_{1,T} \) and \(R_{2,T}, C_{2,T} \) for daughter vessels 1 and 2, respectively (Fig. 5.4e). We can then combine these two 0-D models into a single three-element Windkessel model, with resistances \(R_{\text{new},1} \) and \(R_{\text{new},2} \) and compliance \(C_{\text{new}} \) (Fig. 5.4f). The total peripheral resistance of the new 0-D model is calculated as

\[
R_{\text{new},1} + R_{\text{new},2} = \frac{1}{1/R_{1,T} + 1/R_{2,T}},
\]

where \(R_{\text{new},1} \) is set to be equal to the characteristic impedance of the parent vessel to minimise wave reflections [Alastruey et al., 2008]. The total peripheral compliance of the new three-element Windkessel is calculated as

\[
C_{\text{new}} = C_{1,T} + C_{2,T}.
\]

5.1.4 Error metrics

The pressure, area and flow waveforms generated by the reduced models were compared with those generated by the complete 55- or 67-models using the following
relative error metrics:

\[
\epsilon_{P,\text{avg}} = \frac{1}{N_t} \sum_{i=1}^{N_t} \frac{|P^R_i - P^C_i|}{P^C_i},
\]

\[
\epsilon_{P,\text{sys}} = \frac{\max_i(P^R_i) - \max_i(P^C_i)}{\max_i(P^C_i)},
\]

\[
\epsilon_{P,\text{dias}} = \frac{\min_i(P^R_i) - \min_i(P^C_i)}{\min_i(P^C_i)},
\]

\[
\epsilon_{Q,\text{avg}} = \frac{1}{N_t} \sum_{i=1}^{N_t} \frac{|Q^R_i - Q^C_i|}{\max_j(Q^B_j)},
\]

\[
\epsilon_{Q,\text{sys}} = \frac{\max_i(Q^R_i) - \max_i(Q^C_i)}{\max_i(Q^C_i)},
\]

\[
\epsilon_{Q,\text{dias}} = \frac{\min_i(Q^R_i) - \min_i(Q^C_i)}{\max_i(Q^C_i)},
\]

(5.17)

with \(N_t\) the number of time points where the comparison is made. For each time point \(i\), \(P^C_i\) and \(P^R_i\) are the pressures at the same spatial location of the complete (B) and reduced (R) model, respectively. The corresponding flows are \(Q^C_i\) and \(Q^R_i\). The metrics \(\epsilon_{P,\text{avg}}\) and \(\epsilon_{Q,\text{avg}}\) are the average relative errors in pressure and the flow, respectively, over one cardiac cycle; \(\epsilon_{P,\text{sys}}\) and \(\epsilon_{Q,\text{sys}}\) are the errors for systolic pressure and flow; and \(\epsilon_{P,\text{dias}}\) and \(\epsilon_{Q,\text{dias}}\) are the errors for diastolic pressure and flow. To avoid division by small values of flow, we normalised the flow error by the maximum value of flow over the cardiac cycle, \(\max_j(Q^B_j)\).

5.2 Results

We applied our method for reducing the number of 1-D model arterial segments described in Section 5.1.3 to the normotensive (Section 5.2.1) and hypertensive (Section 5.2.2) 55-artery models, as well as the normotensive 67-artery model (Section 5.2.3). In all cases we analysed the effect of decreasing the number of arterial segments on the pressure at the aortic root. For the 55-artery model we also investigated the pressure and flow at the midpoint of the thoracic aorta. For the 67-artery model we also studied the pressure and flow waveforms at the digital artery in the hand. The aortic-root flow is not studied for any model, since it is...
enforced as the inflow boundary condition.

5.2.1 Normotensive 55-artery model

Figure 5.3 compares the aortic waveforms simulated by six reduced models (dashed black) with those produced by the baseline model (solid grey), under normotensive conditions. Average, systolic and diastolic errors are provided in each plot relative to the baseline model. For each reduced model in panels (a)-(e), the number of segments is shown in the first column and the model topology is illustrated in the second. Diastolic, systolic and average relative errors in aortic pressure are smaller than 3% for any reduced model, even for the single-vessel model shown in panel (e). Relative errors in the flow waveform at the thoracic aorta are greater than in pressure, but remain smaller than 20% (9% for the average relative error).

Considerable discrepancies between reduced and baseline models appear if 15 or less segments are included. These models, which do not include the superior mesenteric and renal arteries, lead to the following features of the aortic waveform not being captured as well as in the baseline model (Fig. 5.3c,d): the magnitude of the dicrotic notch and the time of peak systole at the root, and the magnitude of systolic pressure, the time and magnitude of the peak flow and the oscillatory flow in diastole at the thoracic aorta. However, all reduced models capture well the time and magnitude of the feet of baseline pressure and flow waves. Moreover, they produce pressure and flow waveforms in the second half of diastole that are similar to those simulated by the complete 55-artery model.

Figure 5.3f shows the aortic-root pressure waveform calculated by a two-element Windkessel model with a resistance and compliance equal to, respectively, the net
peripheral resistance and total compliance of the baseline model. The 0-D model is able to capture precisely the decay in aortic pressure in diastole, but is unable to describe well pressure in systole.

Figure 5.5 (left) shows systolic, diastolic and average relative errors in the pressure at the aortic root with the number of arterial segments. Errors remain smaller than 1% for models containing 53 to 21 segments; the latter consists of the aorta and first generation of bifurcations only (see topology in Fig. 5.3b). Further reductions in the number of segments yield a greater increase in the rate at which errors raise. Qualitatively similar progressions in relative errors are obtained for the flow and pressure at the thoracic aorta.

5.2.2 Hypertensive 55-artery model

Figure 5.6 compares the aortic pressure and flow waveforms produced by six reduced models (dashed black) with those simulated by the complete 55-artery model (solid grey), under hypertensive conditions. The topology of the reduced models and the format of the figure are the same as for the normotensive study above. Pulse and mean pressures are greater under hypertensive conditions: the pulse is doubled while the mean increases by about 50%. The amplitude and mean value of the flow change little with simulated hypertension.

Average relative errors in both pressure and the flow remain smaller than 2% for models containing 53 to 21 segments, in agreement with the normotensive results (Fig. 5.5a,b). However, eliminating segments of the aorta and first generation of bifurcations from the 21-artery model produces smaller errors under hypertensive conditions. Hypertensive reduced models are able to capture well all features of
Figure 5.5: Evolution of the average (top), systolic (middle) and diastolic (bottom) relative errors in the pressure waveform at the aortic root of the 55-artery model with the number of arterial segments, under normotensive (left) and hypertensive (right) conditions. Vertical dashed lines correspond to the 19-artery model: arterial networks displayed on the left and on the line include a full aorta while those on the right only include portions of it.
<table>
<thead>
<tr>
<th>Segment Number</th>
<th>Arterial Network</th>
<th>Aortic Root P (kPa)</th>
<th>Thoracic Aorta P (kPa)</th>
<th>Thoracic Aorta Q (ml/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 53</td>
<td>![Aortic Root Diagram]</td>
<td>![Aortic Root Waveform]</td>
<td>![Aortic Root Waveform]</td>
<td>![Aortic Root Waveform]</td>
</tr>
<tr>
<td>(b) 21</td>
<td>![Thoracic Aorta Diagram]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
</tr>
<tr>
<td>(c) 15</td>
<td>![Thoracic Aorta Diagram]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
</tr>
<tr>
<td>(d) 11</td>
<td>![Thoracic Aorta Diagram]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
</tr>
<tr>
<td>(e) 1</td>
<td>![Thoracic Aorta Diagram]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
</tr>
<tr>
<td>(f) 0</td>
<td>![Thoracic Aorta Diagram]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
<td>![Thoracic Aorta Waveform]</td>
</tr>
</tbody>
</table>

Figure 5.6: Pressure (P) and flow (Q) waveforms at the aortic root and midpoint of the thoracic aorta of the hypertensive 55-artery model (solid grey) and several reduced models (dashed black), one for each row. The number of segments and the arterial topology for each reduced model are given in the first two columns. The aortic-root pressure waveform calculated by a two-element Windkessel model of the whole systemic circulation is shown in (f). Average (avg), systolic (sys) and diastolic (dias) relative errors are indicated in the top right corner of each plot.
the aortic pressure waveform that normotensive reduced models were unable to reproduce (compare Figs. 5.3a-e and 5.6a-e). Discrepancies in aortic flow waveforms are similar under both normotensive and hypertensive conditions (compare last column in Figs. 5.3a-d and 5.6a-d). Moreover, similar evolutions of systolic and diastolic errors are observed under both normotensive and hypertensive conditions (Fig. 5.5).

In agreement with the normotensive results, the aortic-root pressure waveform calculated by the two-element Windkessel model of the whole systemic circulation is able to describe well the decay in pressure during diastole, but is unable to produce most of the features of the pressure wave in systole (Fig. 5.6f).

5.2.3 Normotensive 67-artery model

Figure 5.2 compares the aortic pressure and flow waveforms produced by six reduced models (dashed black) with those simulated by the complete 67-artery model (solid grey). Pulse and mean pressures differ from those of the baseline 55-artery model by -2.8% and 6.9% at the aortic root (Fig. 5.1). This is due to the total resistance and compliance being altered by the extended arterial network in the hands. With segment reductions, average systolic and diastolic relative errors of central aortic and digital arterial pressure remain smaller than 3% for models containing 65 to 19 segments. Relative errors of flow at the digital artery remain less than 5%.

Reduced 67-artery models with less than 33 vessels do not capture the following features at the central aorta: magnitude of the dicrotic notch and the time and magnitude of peak systole (Fig. 5.2d-f). At the digital artery these reduced
Figure 5.7: Evolution of the average (□), systolic (+) and diastolic (●) relative errors in the pressure waveform at the aortic root (a) and digital artery (b) with the number of arterial segments in the 67-artery model. Vertical dashed lines correspond to the 35-artery model: arterial networks displayed on the left and on the line include a full aorta while those on the right only include portions of it.

models no longer capture the time of arrival of the second pressure peak, the magnitude of the first pressure peak, and the oscillatory flow in diastole. Figure 5.7 shows average, systolic, and diastolic relative errors in the pressure at the aortic root (a) and digital artery (b) with the number of arterial segments. The largest divergence between the complete and reduced models is seen if less than 33 vessels are included; i.e. if aortic segments are lumped into Windkessel models.
5.3 Discussion

In this study we have presented a novel methodology for investigating the minimum number of arterial segments required to simulate precisely blood pressure and flow waveforms at multiple arterial sites using nonlinear 1-D modelling. By systematically lumping terminal 1-D model segments into 0-D Winkessel models that preserve the net resistance and total compliance of the original model (Fig. 5.4), we can study the effect on central and peripheral waveforms of reducing the number of arterial segments and, hence, input parameters. We have applied our methodology to investigate the effect of network topology (and hence reflection sites) on the shape of pressure and flow waves in the aorta and digital artery in the hand. To carry out this study we have used a nonlinear 1-D model of blood flow in the 55 larger systemic arteries of the human, under normotensive and hypertensive conditions, and an extended 67-artery model which includes the larger arteries in the hand, under normotensive conditions.

We have focussed on analysing (i) aortic haemodynamics, because central (aortic) pressure is an important determinant of cardiovascular function, and (ii) peripheral haemodynamics in the digital arteries, because pressure and volume at the digital artery can be measured continuously and non-invasively in the clinic; e.g. using the Finapres device [Imholz et al., 1998] and photoplethysmography [Almond & Jones, 1988; Avolio, 2002], respectively. Our simulated aortic and digital pressure and flow waveforms contain the main features observed in vivo (Fig. 5.1).
5.3.1 Optimising arterial network topology

The 55-artery model consists of the aorta and other large arteries up to the fifth generation of bifurcations (Fig. 5.1) and contains 227 input parameters. The 67-artery model consists of the aorta and other large arteries up to the sixth generation of bifurcations (which include the palmar arch and digital arteries Fig. 5.1) and contains 271 input parameters. Each arterial segment is described by three parameters (length, luminal cross-sectional area at diastolic pressure and diastolic pulse wave velocity), while two additional parameters are required to model each peripheral arterial segment (peripheral resistance and compliance). The remaining parameters are the density and viscosity of blood, the shape of the velocity profile, the diastolic pressure, the inflow boundary condition and the outflow pressure at terminal Windkessel models.

By subsequently trimming the 55-artery model of generations of bifurcations, the number of arterial segments is reduced to 21, if only arterial vessels up to the first generation of bifurcations are simulated using 1-D modelling. As a result, the 227 input parameters of the initial model are reduced to 91. Such a considerable reduction in the number of parameters yields aortic pressure and flow waveforms which contain all the features of the 55-artery model with errors of up to only 4% relative to the initial model (Figs. 5.3b and 5.6b). Reducing the 67-artery model (271 input parameters) to the first generation of bifurcations (37 arteries, 171 parameters), with all segments of the right upper limb preserved, results in relative errors smaller than 1% in pressure at the central and peripheral measuring sites and smaller than 3% in the flow at the peripheral measuring site, with all errors relative to the initial model (Fig. 5.2b). These results suggest that our
original 55-artery (67-artery) models are over-parameterised for simulating aortic (and digital) waveforms.

The focus of previous studies using 1-D modelling [Avolio, 1980; Blanco et al., 2014; Mynard & Nithiarasu, 2008; Perdikaris et al., 2014; Reymond et al., 2009; Stergiopulos et al., 1992] was not confined to the simulation of aortic and upper-limb pulse. Our results favour the use of reduced models which consider only the arteries of interest; e.g. the model of Karamanoglu et al. [1994] for the ascending aorta and upper-limb vessels, and the model of Willemet et al. [2013] for the lower-limb vessels. This result has important implications for patient-specific 1-D modelling. A reduction in the number of 1-D model arterial segments decreases the number of input parameters that need to be prescribed, which should facilitate the estimation of a greater percentage of the total number of parameters from clinical measurements. Lowering the number of parameters, therefore, should increase the degree of patient-specific modelling that can be achieved to simulate central and upper-limb haemodynamics. However, it is important to note that the degree of applicability of 1-D models for patient-specific modelling remains at a pilot stage. As such, the task of clinical estimation of the 1-D model parameters may still be challenging, even if using the suggested lumping approach.

Our results also contribute towards understanding the role of pulse wave reflections in shaping the aortic (Section 5.3.2) and digital (Section 5.3.3) pressure and flow waves.
5.3.2 Effect of wave reflections on aortic pressure and flow waveforms

The excellent agreement between the 55-artery model and the reduced 21-artery model containing segments up to the first generation of bifurcations (Figs. 5.3b and 5.6b) suggests that the effect of multiple reflection sites downstream vessels of the first generation of bifurcations can be lumped into single reflection sites at the end of these vessels. Further reduction in the number of arterial segments by lumping aortic segments increases considerably relative errors once the superior mesenteric and renal arteries are removed (Fig. 5.3c-e). These observations are supported by in vivo studies showing that reflected waves generated artificially by total occlusions in the aorta distal to the renal arteries have no discernible influence on the pressure and flow waveforms at the ascending aorta [Khir & Parker, 2005; van den Bos et al., 1976]. It is also in agreement with the outcome of numerical studies that used different tools of pulse wave analysis [Alastruey et al., 2009b; Karamanoglu et al., 1994]. Our numerical results are also consistent with the horizon effect hypothesis [Davies et al., 2012], which states that aortic reflected waves are an amalgam of individual reflections from multiple reflection sites, with the nearer site contribution at full strength and sites further away having their contributions attenuated.

Further reductions in the number of 1-D model segments of the 55-artery model by lumping aortic segments and arteries that branch off the aorta into 0-D models – starting from the iliac bifurcation – yields relative errors in aortic flow and pressure smaller than 5% (Fig. 5.5). Relative errors in aortic-root pressure remain below 5% even if all the 55 segments of the baseline model are integrated into Frank
two-element Windkessel model of the entire arterial system (Figs. 5.3f and 5.6f). Removing aortic segments in the 55-artery model leads to discrepancies in the shape of aortic pressure and flow waveforms, in systole and early diastole, but does not in approximately the last half of diastole. This result suggests that the diastolic part of the pressure waveform along the aorta can be described by a lumped parameter model with only four parameters (the inflow from the left ventricle, the total compliance of the systemic circulation, the net resistance at the aortic root and the outflow pressure), which corroborates \textit{in vivo} [Wang \textit{et al.}, 2003; Westerhof \textit{et al.}, 2009] and numerical [Willemet & Alastruey, 2014; Xiao \textit{et al.}, 2013] studies showing that aortic pressure becomes space-independent with increasing time in diastole.

Lumping aortic segments of the 55-artery normotensive model yields reduced models that are unable to capture the main features of aortic pressure and flow waves in systole (Fig. 5.3c-f). Under hypertensive conditions, however, models with a reduced number of aortic segments maintain all features of the aortic-root pressure waveform with relative errors smaller than 2% (Fig. 5.6 c-e). This result suggests that individual distal reflection sites affect less the slope of the central pressure wave with hypertension. The following mechanism underlies this result. Greater PWVs in the hypertensive model make more valid the assumption of our reduction methodology of pulse wave transit times within each vessel being much smaller than the duration of the cardiac cycle. Our additional assumption of negligible inertia effects is also satisfied better in the hypertensive model, since increasing PWV (and hence decreasing arterial compliance) decreases the weight of the flow acceleration term in the conservation of momentum relative to the pressure gradient and viscous terms [Willemet & Alastruey, 2014].
5.3.3 Effect of wave reflections on digital pressure and flow waveforms

In the 67-artery model we systematically lumped aortic segments and branches off the aorta into 0-D models while preserving all arterial segments of the upper right limb. For any reduced models, we obtained relative errors for pressure and the flow at the aortic root and digital artery smaller than 4.5% (Figs. 5.2 and 5.7). The model with the least number of segments (19) contains only the ascending aorta and upper-right-limb vessels and has a topology similar to that used by Karamanoglu et al. [Karamanoglu et al., 1994].

Results at the aortic root (Fig. 5.2) are in agreement with those obtained by the 55-artery model and confirm our conclusion that the effect of multiple reflection sites downstream vessels of the first generation of bifurcations can be lumped into single reflection sites at the end of these vessels.

Pressure and flow waveforms at the digital artery have two peaks, as observed in vivo. The second peak is progressively flattened as aortic segments are lumped (Fig. 5.2b-f). The greater change in shape occurs if the renal arteries are lumped into 0-D models (Fig. 5.2c-e). This result suggests that wave propagation in the thoracic aorta and renal arteries plays an important role in generating the second peak of the digital pressure and flow waves. This observation corroborates the conclusions from Baruch et al. [2014, 2011] and is also consistent with the hypothesis in Chowienczyk et al. [1999]; Millasseau et al. [2002a]: the second peak of the digital volume pulse (which is closely related to the pressure pulse) is due to pressure waves travelling from the left ventricle to the finger and later smaller reflections from internal mismatching, mainly in the lower body.
5.3.4 Perspective

We believe that our methodology could offer valuable insight into optimising the number of model input parameters that are needed to simulate pressure and flow waveforms in a given region of the systemic circulation other than the aorta and digital artery. This will be useful to identify which part of the arterial tree is responsible for shaping a particular pressure waveform and lessen the number of parameters that have to be estimated or taken from the literature to simulate that waveform using 1-D modelling. Other studies have considered truncated arterial networks, e.g. in the leg or arm, and have shown that arterial pressure and flow waveforms can be efficiently modelled without including the aorta in the computational domain [Leguy et al., 2010; Raines et al., 1974; Willemet et al., 2013].

We have not proved that our reduction method produces the optimal result; i.e. other procedures may lead to more complex outflow 0-D models (e.g. those described in Jaeger et al. [1965]; Kind et al. [2010]; Olufsen [1999]; Stergiopulos et al. [1999]) that yield smaller relative errors for pressure and the flow if coupled to reduced 1-D models. It may not be possible to have a patient-specific model with all input parameters calculated from clinical measurements, but we need tools like the one presented here to eliminate unnecessary parameters and advance the usage of patient-specific simulations of arterial pressure and flow waveforms.

Within this chapter we have only considered an elastic arterial tube law model. In future work, it would be of interest to extend our reduction methodology to account for inertial effects (e.g. using inductance terms) and more sophisticated tube laws (e.g. as proposed by Valdez-Jasso et al. [2011]), which may be more
appropriate for hypertensive models [Armentano et al., 1998].

Within this chapter we have considered the influence of a segment-reducing technique on two measuring sites. The differing responses of error between the two measuring sites raises an important issue of this technique. Pressure and flow waveforms are highly sensitive to local geometry changes, thus to apply this technique to another initial geometry careful consideration must be taken as to where the measuring sites that they wish to preserve are located.

Given the excellent agreement between 1-D and 3-D pressure and flow waves in the aorta, as reported by Xiao et al. [2013] under normal conditions, we believe that our methodology could be adapted to determine the size of the computational domain in 3-D blood flow modelling. This would require a methodology for lumping 3-D model vessels into 0-D models.

In future work the reduced parameters will not necessarily need to be derived from an original large arterial network but can be derived separately.

5.3.5 Concluding remarks

We have presented a new method for lumping peripheral 1-D vessels into 0-D Windkessel models that enables us to analyse the effect of network topology on pulse waveforms and determine a suitable number of arterial segments (and hence input parameters) required to simulate efficiently blood pressure and flow waveforms at multiple arterial sites which are relevant for a particular problem. This is important to simplify the computational domain while maintaining the precision of the numerical predictions.
Chapter 6

Conclusions and Future Work

We conclude with a summary of the work presented within this thesis. We also provide an overview of the wider implications of the work completed in this study. We highlight the hurdles that may be faced to apply the findings of this thesis to the clinical setting. We conclude with some directions of work for the future.

6.1 Summary of the Thesis Achievements

Previously extensive research has been conducted in vivo to investigate how changes in the properties of the cardiovascular system affect the shape of the PPG waveform [Allen et al., 2005; Arza et al., 2013; Awad et al., 2006; Baek et al., 2007; Baruch et al., 2014, 2011; Boos et al., 2007; Cannesson et al., 2007; Dillon & Hertzman, 1941; Eduardo & Gomes, 2015; Elgendi, 2012; Hubena et al., 2015; Jaryal et al., 2009; Liu et al., 2014; McGrath et al., 2011b; Millasseau et al., 2002a, 2006; Takazawa et al., 1998; Usman et al., 2013; Utami et al., 2013]. Within this thesis we have used 1-D/0-D arterial blood flow modelling to investigate how changes in physical properties of the cardiovascular system affect the PPG waveform, focusing on the DVP.
The first part of this thesis has focused on the development of an 120-artery 1-D/0-D model, which includes the arterial vasculature of the hand and head. To this model we have applied a local sensitivity analysis, systematically altering peripheral Windkessel parameters, the cross-sectional area of the elastic and muscular arteries, and the stiffness of the elastic and muscular arteries, to study how characteristics of the cardiovascular system influence the morphology of the PPG waveform. We have then applied a global sensitivity analysis, the results of which have enabled us to create a fictive population of healthy and diseased (hypertension, diabetes, and combined hypertension and diabetes) arterial models. To this we have assessed the ability of existing and novel biomarkers to classify disease state. In the second part, a novel technique has been developed to help optimise the number of arterial segments included within an arterial model in order to achieve reasonable accuracy of predicted pulse waveforms.

The following subsections summarise the main three results of these thesis.

6.1.1 The digital PPG wave is strongly affected by the aortic flow wave and the muscular-artery stiffness and diameter

Validating a numerical model is a formidable task. There are many potential measurement sites to validate by comparison against in vivo data. The main aim of Chapter 3 was to create a generic arterial tree, representative of a healthy patient. Here we extended the existing geometrical model by Reymond et al. [2009] to include the vasculature of the hands [Epstein et al., 2014] and an alternative viscoelastic tube law [Alastruey et al., 2011]. Reymond et al. [2009] hypothesised
that the cerebral circulation is necessary to obtain an accurate pressure and flow waveform at the carotid artery; it is for this reason that we have included the vasculature of the head within this work. Photoplethysmography is a simple and cheap non-invasive technique that is extensively used. It consists of a small light source and photodetector most often measured at the digit. We wanted to use our new 1-D model to understand how changes of the cardiovascular system contribute to changes in the measured PPG signal. For this purpose we have included the vasculature of the hands, so that we can compare our results to measured PPG waveforms. Here we assume that the PPG signal can be represented by the cross-sectional area of the digital artery [Alastruey et al., 2009a; Gircys et al., 2015]. To our knowledge, this is the first study to link 1-D blood flow modelling and PPG signals in humans.

We have changed several inputs to the model (e.g. aortic diameter, carotid diameter, muscular diameter, arterial stiffness, peripheral resistance, etc) to match literature values. We have chosen to qualitatively compare pressure and flow waveforms at multiple measuring sites from a range of literature sources. We have compared flow at the aorta, carotid, radial, brachial, iliac and temporal arteries. Pressure at the aorta, carotid, radial, femoral, digital and temporal arteries have also been compared. Finally, we have compared the cross-sectional area at the finger to a measured PPG waveform. Results have shown that the model is able to produce the main features of physiological pressure and flow waveforms in the larger systemic arteries and digital circulation. Comparison at the cerebral circulation, where flow waveforms are more complex and exhibit more variation in their shape, have revealed an inadequacy of the model to replicate temporal arterial flow.
This study has strong clinical applications as it relates PPG waveform analysis (a non-invasive continuous measure of cardiovascular function) to known risk markers (e.g. PWV). The sensitivity methodology developed within this work provides a clear framework to investigate other variations in physical properties of the cardiovascular system and their influence on the PPG waveform. Due to the complexity of human physiology, this type of incremental sensitivity analysis would not be possible in vivo with pharmacological intervention.

A number of phenomena were not represented in this model, e.g. gravity. Payne [2004] has shown the influence of gravity to blood flow in an elastic axisymmetric vessel to be greater than the viscous effects or the momentum force. Gravitational forces are particularly important when studying the effect of postural changes [Olufsen et al., 2005].

In the second part of Chapter 3 we have carried out a local sensitivity analysis. This is one method to evaluate how inputs of the model change the measured digital area waveforms, which is analogous to the PPG DVP. From this analysis we have shown that the measured PPG waveform is not very sensitive to changes in the peripheral resistance and Windkessel pressure. The parameters that influence the results the most are muscular stiffness and diameter. Notably, but to a lesser degree, the stiffness and diameter of the elastic vessels play an influential role in changes to the PPG waveform. We have chosen not to change the peripheral compliance or the length of the individual arteries based on the findings of Leguy et al. [2011]; Willemet et al. [2013].

In the final part of Chapter 3 we have evaluated how the shape of the flow waveform (prescribed as the inlet boundary condition) changes the area waveform at the digital artery. Here we have found a strong correlation between the systolic
peak at the area and the systolic peak at the aortic root. Similarly, the timings of the systolic peak at the aortic root and the area at the digital artery were strongly correlated.

6.1.2 The DVP peak-to-peak time can classify hypertensive vs diabetic subjects: a virtual population study

In Chapter 4 we have created a workflow to derive the necessary parameters from literature data to build a fictive population of healthy, diabetic, combined diabetic and hypertensive, and hypertensive subjects. Using this fictive blood flow simulations we have assessed traditional biomarkers (e.g. PWV and pressure) in addition to the indices calculated from the DVP wave investigated in Chapter 3.

We have developed a methodology to calculate physiological input parameters to our model which produce output parameters that well match healthy, diabetic, combined diabetic and hypertensive, and hypertensive populations taken from the literature. To calculate the input parameters we have used a global sensitivity approach, which has enabled us to assess how input parameters interact with one another, and the sensitivity of the output parameters to these changes. We have then performed several iterations of fictive numerical simulations, with each iteration providing a superior range of input parameters to match clinical data.

Only two known studies have looked at creating numerical simulations to represent a population of patients. Willemet et al. [2015] created a database of virtual healthy patients by varying 7 significant parameters of the 55-artery model within ranges that are representative of a healthy population from literature data. They varied the elastic arteries’ stiffness and diameter, muscular arteries’ stiffness and
diameter, heart rate, stroke volume, and peripheral vascular resistance. This resulted in a population of 3,325 virtual subjects. Kiselev et al. [2015] used patient data from a clinical trial of over 1,500 patients. They personalised the following parameters: upper body arterial stiffness and diameter, lower body stiffness and diameter, heart rate, stroke volume, and peripheral resistance. We have chosen to subdivide the arterial vessels into muscular and elastic arteries, similar to Willemet et al. [2015], with the adaptation of classifying the carotid and iliac-bifurcation arteries as elastic vessels. This adjustment was motivated by literature. Additionally, by classifying the vessels of the iliac-bifurcation as elastic vessels, the reflection coefficient remained within the physiological bounds of -0.3 to 0.3. Thus, unlike Willemet et al. [2015] we did not need to post-process the data to exclude unphysiological reflections coefficients. Since no data were provided on the characteristics of the excluded data set, it is difficult to evaluate whether removing a subset of the population skews the data, creating an unphysiological distribution of results.

We have extracted, from the literature, data on healthy, diabetic, hypertensive, and combined diabetic and hypertensive subjects. This process was by far the most labour intensive part of the study, due to often incomplete information in papers regarding the distribution of diabetic or hypertensives; often this information was entirely excluded from papers. Furthermore, some papers lacked the existence of a control group to compare the diabetic, combined diabetic and hypertensive, and hypertensives to. An additional limitation of this work is that different studies had different distributions of age within each sub group, and since age has a significant impact on cardiovascular function [De Angelis et al., 2004; Kulkarni et al., 2014; Lakatta & Schulman, 2004], this may create an inconsistent population model to derive conclusive results from.
The distribution of PWV, pressure and aortic diameter from the resultant simulated fictive population well match literature values found for diseased and healthy patients. Using this population we have investigated how parameters of the PPG waveform change under different healthy and diseased states. Moreover, we have compared our findings to studies from the literature where PPG parameters have been measured in vivo for the different diseases.

According to our results, the strongest indicator of disease state is the parameter dT (the time between the two peaks of the PPG). We have been able to use dT to differentiate the hypertensive group from the diabetic and baseline subgroups, with a t-test value of 0.05 and 0.01, respectively. In the literature, dT has already been associated to age [Millasseau et al., 2003], vaso-active drugs [Millasseau et al., 2002b, 2003], PWV [Millasseau et al., 2002b; Padilla et al., 2006], organ damage in untreated hypertension [Chen et al., 2005], and metabolic risk factors [Veijalainen et al., 2013]. Our results have shown that the parameters CT, PS, PD, Area and Width are not of statistical significance for the classification between healthy or diseased states.

6.1.3 A new method for optimising the number of input parameters in 1-D modelling: Less is more for patient-specific simulations

In Chapter 5 we have presented a novel methodology to optimise the number of arterial segments considered within a numerical model.

The number of arterial segments used in 1-D modelling has increased in recent years from 55 to 4 million [Avolio, 1980; Blanco et al., 2014; Mynard & Nithiarasu, 2014;...
little consideration has been given to the minimum number of arterial vessels that is needed to well simulate the pressure and flow waveforms at a given site.

In cases where there have been restrictions in the amount of in vivo data collected, smaller subsections of the vasculature have been studied, with good results [Gul et al., 2015; Lafortune & Aris, 2012; Leguy et al., 2011; Raines et al., 1974; Willemet et al., 2013]. Adaptions at the inlet boundary condition to these subsection models are needed since the heart is no longer part of the network [Bokov et al., 2013; Willemet et al., 2011]. How these smaller subsections of models relate to the larger cardiovascular system as a whole remains unclear.

Reymond et al. [2009] showed that in the presence of the detailed cerebral tree, the computed flow at the carotid is physiological, whereas in the absence of the cerebral tree the flow exhibits an abnormally high pulsatility. Otherwise, there are very few works in the field of 1-D modelling looking at what is the minimum geometry necessary around a given measuring site in order to simulate physiological pressure and flow waveforms.

Within this chapter we have presented a new methodology to systematically lump 1-D arterial domains into 0-D models Analysis has then been performed on sites of interest to determine how this systematic lumping affects local pressure and flow waveforms. For this purpose we have compared two sets of simulations. The first compares pressure and flow waveforms at two sites in the aorta, whilst lumping the vasculature peripheral to the aorta in a normotensive and hypertensive representation of the cardiovascular system. The second compares pressure and flow waveforms at the aorta and digital artery whilst lumping the peripheral vasculature towards the two sites of interest, in a normotensive model of the
We believe that our methodology could offer valuable insight into optimising the number of model input parameters that are needed to simulate pressure and flow waveforms in a given region of the systemic circulation other than the aorta and digital artery. This will be useful to identify which part of the arterial tree is responsible for shaping a particular pressure waveform and lessen the number of parameters that have to be estimated or taken from the literature to simulate that waveform using 1-D modelling. Other studies have considered truncated arterial networks, e.g. in the leg or arm, and have shown that arterial pressure and flow waveforms can be efficiently modelled without including the aorta in the computational domain.

6.2 Directions for Future Research

Hypertension is a highly preventable risk factor for cardiovascular disease [World Health Organization, 2003], and is most prevalent in patients aged 40+ [Gu et al., 2008]. Diabetes mellitus kills more people each year globally than malaria [Mathers & Loncar, 2006]. In developing countries there is a much greater predicted number of middle-aged patients than elderly patients with diabetes [King et al., 1998]. But with the exception of Caroli et al. [2013]; Willemet [2012], existing 1-D blood flow models have been of young (≤ 30 years) patients Blanco et al. [2014]; Guala et al. [2015b]; Leguy [2010]; Mynard & Smolich [2015]; Reymond et al. [2011], or do not provide information of the age of the patients being considered [Bode et al., 2012]. For these reasons, we wanted our model to represent a middle-aged patient (with an approximate age of 40-60 years). We have scaled several parameters (e.g.
capillary pressure, inflow) to better match values from the literature for an older subject (age 50-60 years), apart from the inflow which has been scaled to a patient of age 33 years. An improvement to this model would be to better match the inflow to an older patient.

Ageing is associated with several physiological trends. Length, mean diameter and volume of the aorta are known to increase with age [Avolio et al., 1983; Craiem et al., 2012; Greenwald, 2007; Lakatta & Schulman, 2004; Levy, 2001; McEniery et al., 2005; Nichols et al., 1984]. Muscular artery stiffness is seen to increase with age but to a lesser degree than central aortic stiffness [Avolio et al., 1983; McEniery et al., 2005]. Stroke volume and cardiac output is known to decrease with increasing age [Nichols et al., 1984] Furthermore, with ageing an increase in peripheral resistance is observed [Ferrari et al., 2003]. It is noted that ageing is known to lengthen loosely tethered vessel, such as the abdominal aorta [Wenn & Newman, 1990], a parameter which was fixed within this thesis and the work of Karamanoglu et al. [1995]. Further refinement needs to be conducted on how to best represent an older subject in a numerical model.

Within our numerical model, the heart has been modelled as a boundary condition, which is limiting, especially when wishing to change specific characteristics of the cardiac function. Using a 0-D heart model, e.g. as proposed in Formaggia et al. [2006]; Mynard & Nithiarasu [2008]; Reymond et al. [2011], would allow a greater control over cardiac parameters (e.g. heart rate, contractility and filling). This would allow us to test independently how changes to the heart influence the shape of the PPG waveform. Furthermore, this would better match the inflow to a specific age group.

Another development of the current code would be to apply an external variable
pressure gradient to the vessels within the thoracic cavity to simulate breathing. A model of breathing already exists within the literature [Baretta et al., 2012]. This improvement to the code would then simulate the DC component of the PPG waveform at the digital artery. It would be of particular interest to study how simulated breathing affects the measured PPG in different diseased models (e.g. diabetic or hypertensive).

To simulate blood flow it is necessary to have a law relating the pressure to the cross-sectional area of a vessel; i.e. a tube law. Within this thesis we have used a visco-elastic and an elastic tube law (see Chapter 2). There are several other linear and nonlinear tube law models that exist in the literature [Blanco & Feijóo, 2013; Bodley, 1971; Brook et al., 1999; Kitawaki, 2012; Li & Cheng, 1993; Olufsen, 1999; Reymond et al., 2009; Streeter et al., 1963; Surovtsova, 2005]. The more complex the tube law, the more input parameters are needed. Further studies would therefore be needed to evaluate which tube law is best, and whether the gain in precision is compromised by any uncertainty of the parameter estimation.

The limitations of the Windkessel models in the cerebral circulation needs to be investigated further, since autoregulatory effects play an important role [David et al., 2003; Ferrandez et al., 2002; Moorhead et al., 2004]. In this work we have matched the viscous term for the visco-elastic tube law of the cerebral circulation on the basis of similar sized vessels from elsewhere in the arterial system. This assumption needs to be validated against in vivo measurements of the cerebral circulation of the Kelvin-Voigt viscous term.

To simplify our sensitivity analysis we have subdivided all the arterial sections into muscular and elastic groups. In this work, the carotid artery has been assumed to be muscular. Since the carotid artery presents structural properties similar to
the aorta [Boutouyrie et al., 1992], it may be more appropriate to consider the carotid as an elastic artery. One area of future work would be to refine how systemic arteries are classified into subgroups, it may even be interesting to subdivide the muscular arteries into two further subgroups based on cross-sectional area.

We have attempted to use an RSM method to create a hypertensive and diabetic population. The literature data gathered from diabetic, hypertensive, and combined diabetic and hypertensive subjects that exists is incomplete and measured using several different protocols, from different patient cohorts at different times. This could be improved by undertaking a clinical trial with a normotensive, diabetic, hypertensive, and combined diabetic and hypertensive aged match cohort. To this cohort it would then be possible to consistently measure parameters such as PWV, pressure and PPG signals, to better tailor the inputs to a new numerical model.

Ideally an assessment of performance for a classification tool (as used in Chapter 4) should be completed against a large independent data set that was not used in the training set. This was not possible within this study due to the lack of data available. An area of future work would be obtaining additional data sources to validate this classification tool.

Other classification methods other than that used in Chapter 4 exist such as boosted trees [Austin et al., 2013], artificial neural networks [Das et al., 2009], and support vector machines [Çomak et al., 2007]. An area of future work would be investigating alternative tools in order to compare their strengths and weaknesses when applied to the field of 1-D blood flow modelling.

Alty et al. [2007] used a dual approach for the classification of arterial stiffness by utilising parameters based on physiology and information theory. From this
they were able to classify the arterial stiffness of a patient to a high degree of accuracy. A similar approach should be taken to help classify the diabetic, hypertensive, and combined diabetic and hypertensive population; utilising not just the parameters from within this thesis, but a combination of features from the PPG waveform.

Finally, within 1-D modelling a truncated arterial geometry presents many advantages. Considerably less input parameters are needed and there is less computational cost. However, by removing 1-D arterial segments we lose sites of reflection, something that is not straightforward to replicate in 0-D models. By applying the methodology described within Chapter 5, it could help during the early design phase of a 1-D numerical blood flow project to assess which segments are absolutely necessary to be included into the final network of segments. This could help to drastically reduce the complexity of personalising input parameters to a model. An extension of this work would be to apply the same methodology to a visco-elastic tube model. An interesting future study would be to look at the effects of this lumping methodology on measured biomarkers.
References

172

BOILEAU, E., NITHIARASU, P., BLANCO, P.J., MÜLLER, L.O., FOSSAN, F.E., HELLEVIK, L.R., DONDERS, W.P., HUBERTS, W., WILLEMET, M. & ALAS-

179

pressure augmentation in subjects with treated hypertension. *JACC*, **32**, 1214–20. 21

Caroli, A., Manini, S., Antiga, L., Passera, K., Ene-Iordache, B., Rota, S., Remuzzi, G., Bode, A., Leermakers, J., van de Vosse,

Cruickshank, J. & Wright, J. (1990). Depressed aortic compliance in diabetics compared with verified controls for given levels of blood pressure over a wide range. *J. Hypertens.*, **8**, 1069. 16

185

189

than insulin-sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state. *Circulation*, 101, 975–80. 16

204

211

R Development Core Team (2014). R: A language and environment for statistical computing. Vienna: R foundation for statistical computing. 110

222

wave velocity as index of arterial stiffness in the general population. *Circulation*, 113, 664–70. 20, 103

235

